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ABSTRACT In this note we study the effect of constant
pseudostate feedback on the internal properness of a linear
multivariable system, described by an ARMA model. It is shown that
the existence of a constant pseudostate feedback control law which
makes the closed loop system internally proper is equivalent to the
absence of decoupling zeros at infinity of the open loop system, a well
known result from the theory of descriptor systems.

1. INTRODUCTION
We consider systems described by ARMA models having the form

A(p)€(t) = Blp)u(t) (1.1)

where A(p) = Xq: Aip' € R[p]™", B(p) = Xp: Bip' € R[p]"™™, £(t) is the ‘pseu-
i=1 i=1

dostate’ vector and w(t) is the input vector, p stands either for the differential
operator % in the continuous time or the time advance operator p&(t) = £(t+1)
in the discrete time case. We assume that (1.1) is regular, i.e. det A(p) # 0
for almost every p, which guarantees the uniqueness of the solution given the
initial conditions and the input. The term ‘pseudostate’ is justified by the fact
that £(t) can be considered as the vector of internal or ‘latent’ variables of the
system (see [13]).
Consider now (1.1) together with the pseudostate feedback control law

u(t) = KE(t) +v(t) (1.2)

where K € R™™ and v(t) is a new input. The objective of this note is to
derive a necessary and sufficient condition, under which the closed loop system
described by (1.1) and (1.2) is internally proper.

The significance of internal properness of a continuous-time, linear system
arises from the fact that its absence gives rise to impulsive behavior, either
because of inconsistent initial conditions or due to the presence of discontinuous
input signals. In general, impulsive behavior is an undesirable feature for a
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system. Furthermore, many polynomial design techniques require systems
that are already internally proper (see for example [2], [10]-Ch.7). In the
discrete-time case the lack of internal properness reflects non-casual behavior
of the underlying system. This type of behavior occurs in many discrete-time
economical or social models (e.g. the Leontief model, see [7]) and internal
properness of such a system simply translates to causality. In what follows we
shall only refer to the continuous case since the results are identical for both
cases.

The action of constant pseudostate (output) feedback K on the (external)
properness of the closed loop transfer function matrix of (1.1) has been studied
in [1], where it is shown that generically there exists a K which makes the
closed loop transfer function matrix proper. Furthermore in [9] conditions for
K giving rise to a non-proper closed loop transfer function have been derived.

The theory of descriptor systems has developed conditions under which
a generalized state space system can be made internally proper by the use
of state (descriptor) feedback. Such results can be found in [3], [4], [5], [7]
where a geometric characterization of impulse controllability and its role on the
existence of a state feedback that makes the system ‘impulse free’, is given. For
instance the elimination of impulsive behavior is a necessary step in order to
apply LQ control techniques on a descriptor system in [4]. The related problem
of controllability at infinity is discussed in [6], [8] and [12]. In particular in
[6] it is shown that controllability (finite and infinite) is one of the necessary
conditions for arbitrary pole placement via generalized state feedback.

In what follows R, C denote the field of real and complex numbers respec-
tively, R[p] the ring of polynomials with coefficients in R, R(p) the field of real
rational functions and R, (p) the ring of (real) proper rational functions. The
superscripts in the above symbols denote sets of matrices or vectors having
their elements in the corresponding ring or field.

2. MAIN RESULTS

We give first a definition of the McMillan degree of a general rational matrix
(see e.g. [10]):

Definition 1. The McMillan degree of a rational matrix A(p) € R(p)"*™ is
defined as the total number of poles in C'U {oo} of A(p), i.e.

I (A(p)) := {# of poles in C' U oo}

We notice that in case A(p) is a polynomial matrix, its McMillan degree
equals to the total number of poles at p = oo, since there are no finite poles.

The definition of internal properness given bellow is a direct consequence of
the definitions given in [2]-pp.114 where internally proper systems are termed
‘well-formed’ or in [10]-pp.240. The abovementioned definitions are a bit more
general since they involve an output vector as well. However, in our case the
pseudostate vector can be considered as the output of the system.



Definition 2. The system (1.1), is said to be internally proper iff
(i) for every initial value £(0—) and its derivatives €9 (0—), i = 1,2, ...,q—1
(ii) for every ‘impulse free’ input u(t) with v (0—) =0,4i=0,1,2, ...
the pseudostate £(t) is ‘impulse free’, i.e. it does not contain Dirac impulses
& (t)and its derivatives 6 (t) .

We give now some results regarding the internal properness of (1.1).
Lemma 3. The following statements are equivalent

(i) The system described by (1.1) is internally proper.
(ii) A= (p) € R, (p), A7 (p)B(p) € Ry (p).

Alp) B(p)

(iii) The polynomial matrix R(p) := [ 0 I

1 has no zeros
at p = oo.

(iv) deg |A(p)] = o | Alp), Blp) |.

Proof. The equivalence of statements (i),(ii) and (iv) is a direct consequence
of theorem 52, pp. 115 in [2], while the equivalence of (ii) and (iii) is established
after some trivial manipulations in theorem 4.90, pp. 240 in [10]. B
Condition (ii) in the above lemma states that the properness of the trans-
fer function matrix A~ (p)B(p) cannot guarantee impulse free behavior for the
system. This is due to fact that even if the input-pseudostate transfer func-
tion is proper, there might still be impulsive behavior in the free pseudostate
response due to appropriate initial conditions §(i)(0—),i =0,1,...,g—1.

Remark 1. The above lemma can be considered as a generalization of a well
known result from the theory of descriptor systems. If we set A(p) = pE — F
and B(p) = G then condition (iv) of lemma 3 becomes

The system described by (pE — F) x (t) = Gu (t) is internally proper <

(pE—F)"" € RyX(p) & deg|pE — F| = (2.1)
([ pE—F, G|) = opy(pE —F)=rankE (2.2)

This result occurs in several studies (see for example [8], [7]).

The following definition can be considered as a special case of the definition
of input decoupling zeros at infinity of a general polynomial matrix description
of a system, which appears in [11].

Definition 4. The decoupling zeros at p = oo of (1.1) are the zeros at p = o

of | Alp), Blp) |



Consider now (1.1) together with the following pseudostate feedback
u(t) = KE(t) + v(t) (2.3)

where K € R™™ and v(t) is a new input. Then the closed loop system is

described by
[A(p) + B(p)K]£(t) = B(p)u(t) (2.4)

Definition 5. The pseudostate feedback law K is called admissible iff (2.4) is
regular i.e. iff det [A(p) + B(p)K] # 0 for almost every p.

Consider now a left coprime at p = oo proper rational matrix fractional
representation of { A(p), B(p) } , 1.e. let

| A(p), B(p) | =D(p)™" | Nalp), Ns(p) | (2.5)

where D(p) € R, (p), Na(p) € R\ (p).Ne(p) € Ryr™ (p) and
rank { D(0), Na(oo), Np(o0) } = r. Then we have
Fact 1. The zeros at p = oo of { A(p), B(p) } are the zeros at p = oo of

| Na(p), Na(p) | [10].
Consider also the polynomial matrix

—1
Ric(p) = A(p)+B(p)K B(p) | _| D(p) 0 Nalp) Ne(p) || Iy
(2.6)
D(e0) 0 Nafoo) Ny(oc) ] — 4 m so that
(2.6) is a left coprime at p = oo proper rational matrix fractional representation
of Rk(p) and therefore we have
Fact 2. The zeros of Rk (p) at p = 0o are the zeros at p = 0o of Nk(p) :=
Na(p) Nz(p)
-K I, ’
We now state our main result.

It is easy to see that rank l

Theorem 6. The following statements are equivalent.
(i) There exists an admissible pseudostate feedback as in (2.3) such that
the closed loop system (2.4) is internally proper
.. N N
(i) Nic(p) = | ) 20
(iii) The system (1.1) has no decoupling zeros at p = oo.

has no zeros at p = oo

Proof. (i) =(ii) Assume that there exists a K as in (i). Then from Lemma
3 Rk (p) has no zeros at p = oo which in view of Fact 2 implies (ii).

(il)=(iii) Ng(p) has no zeros at p = oo implies rankNg(co) = r+m which
in turn implies that rank[ Na(oco), Npg(co) | = r which due to Fact 1 implies
that [ A(p), Bl(p) }has no zeros at p = oo or from Definition 4 implies (iii).
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(iii)=(i) Assume that he system (1.1) has no decoupling zeros at p = oo or
equivalently that { A(p), Blp) } has no zeros at p = oo. From Fact 1 this

implies that { Na(p), Ng(p) } has no zeros at p = oo or that

rank { Na(o0), Np(o0) } = r or equivalently that rank [ sl, — Ny(o0), Np(o0) } =
r, for s = 0. In other words the pair of matrices (sI, — Na(o0), Np(c0))

has no input decoupling zeros at s = 0. This guarantees the existence of

an appropriate (state) feedback K which assigns the (possible) zero eigen-

values of N4(oc0) to any arbitrary position in the C'— plane, i.e. such that

det [Na(o00) + Np(00) K] # 0. Now it is easy to see that det Ng(oco) =

det [N4(00) + Np(c0) K] # 0. Thus there exists a K such that rankNg(oco) =

r+m, ie. Nk(p) € RGTm*m) () is biproper which implies:

e (a) det Nk (p) # 0 for almost every p which implies that det Rx(p) # 0
for almost every p which, from (2.6), implies that det [A(p) + B(p) K] # 0
for almost every p i.e. the closed loop system (2.4) is regular or equiva-
lently that the pseudostate feedback law K is admissible and

e (b) Rx(p) has no zeros at p = 0o, which from Lemma 3 (iii) implies that
he system (1.1) is internally proper. B

The proof of the above theorem suggests a way to obtain K

e Calculate a coprime at p = oo proper rational matrix fractional repre-
sentation of [A(p), B(p)] as in (2.5),

e Find a K such that det [N4(o0) + Np(c0)K] # 0.
We illustrate this result via the following

Example 7. Consider the system described by

l 22—_21 . ] £(t) :[ ] : ] u(t) (2.7)
A T

Since

|
e -y
_ (PP+p*—pt1)
-1 _ 1 2x1
A(p) B(p) - (pfl)(p3i—"p_27p+2) ¢ Rp7>“< (p)
p+1

the system is not internally proper. The Smith-McMillan form of [A(p), B(p)]
at p =00 is

2
oo _ | 0 0
Sta).B(o) = [0 2 0] (2.8)
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Obviously [A(p), B(p)] has no zeros at p = oo, i.e. (2.7) has no decoupling
zeros at p = oo, which implies the existence of a constant feedback K = [k, ko]
such the closed loop system (2.4) is internally proper. We calculate a coprime
at p = oo proper rational matrix fractional representation of [A(p), B(p)] with

1 2 0 1— 1 (p+l) p-1
D)= | 7 | o Na = | L7 7 29
p p
Now it is enough to find a K such that
1 0
det [Na(00) + Np(00) K] = det P #0 (2.10)

Thus any K with ko # 0 can make the closed loop system internally proper.
For simplicity choose k; = 0 and ko = 1. With this feedback the closed loop
system (2.4) is given by

P12 [p-1
[p—2 1+p2]§(t)_[ 2 ]U(t) (2.11)

and thus from the facts that

14p?% —2p
-1 A_1_9,2 A_1_9,2
A) + B)K] = | AR TR e )
L pt=1-2p24+4p  pt—1-2p2+4p
[ —pt+1+p3+p?
_1 T A_1-2,2+4,
[A(p) + B(p)K]" B(p) = | 425550 | € By (p)
pr—1-2p2+4p

(2.11) is internally proper. H

3. (CONCLUSIONS

In this note we have proposed a method for the elimination of the undesir-
able impulsive behavior of a linear system described by an ARMA representa-
tion, using constant pseudostate feedback. It has been shown that a necessary
and sufficient condition for the existence of such a feedback, is the absence of
decoupling zeros at infinity of the open loop system. This condition appears
to be a generalization of known results from the theory of descriptor systems
and particularly the ones regarding the impulse controllability of a generalized
state space system.
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