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Abstract In this note we examine the solution and the impulsive
behavior of autonomous linear multivariable systems whose
pseudo-state β (t) obeys a linear matrix differential equation

A (ρ) β (t) = 0 where A (ρ) is a polynomial matrix in the differential
operator ρ := d

dt . We thus generalize to the general polynomial matrix
case some results obtained in [2][3] which regard the impulsive

behavior of the generalized state vector x (t) of input free generalized
state space systems.

1. Introduction

Consider a free system whose dynamics are described by the linear homoge-
nous matrix differential equation

A (ρ) β (t) = 0 t ≥ 0 (1.1)

where
A (ρ) = Aqρ

q + Aq−1ρ
q−1 + . . . + A1ρ + A0 ∈ R [ρ]r×r (1.2)

is a polynomial matrix in ρ = d
dt

, Ai ∈ Rr×r, i = 0, 1, 2, . . . , q > 0
rankR(ρ)A (ρ) = r and β (t) : [0,∞)→ Rr is what is known as the pseudo-state
of the system.

In this note we firstly review the fact that if A (s)−1 is a non-proper
rational matrix then depending on the choice of the initial values β (0−),

β(1) (0−) , . . . , β(q−1) (0−) , (where β(i) (t) := diβ(t)
dti

) the solution β (t) of (1.1)
might exhibit an ‘impulsive behavior ’ at t = 0 which consists of a combination
of the Dirac impulse δ (t) and its (q̂r − 1)-th order distributional derivatives
(where q̂r is the maximum order of the zero at s = ∞ of A (s) , see below).
Due to the fact that A (s)−1 is a non-proper rational matrix if and only if A (s)
has zeros at s = ∞, the impulsive behavior of β (t) at t = 0 for appropriate
initial values can be seen as being associated to the zero structure at s = ∞
of A (s), i.e. due to the fact that the natural modes of (1.1), defined as values
of s where A (s) loses rank, include also the point at s = ∞. Based on these
facts and assuming that A (s) has zeros at s = ∞ we then characterize the
set of initial values β(i) (0−) , i = 0, 1, 2, ..., q − 1 that are such so that β (t)
has no impulsive behavior at t = 0. Furthermore we characterize the set of
initial values that are such that not only β (t) but also its derivatives β(i) (t)
up to a certain order i = 1, 2, ..., j ≤ q − 1 are continuous at t = 0 so that
β(i) (0−) = β(i) (0+) , i = 0, 1, 2, . . . q − 1. We then examine conditions that
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A (s)−1 has to satisfy so that β (t) has not impulsive behavior at t = 0 for every
set of initial values β(i) (0−) , i = 0, 1, 2, ..., q − 1. A necessary and sufficient
condition for the continuity of β (t) at t = 0 and for every set of initial values
β(i) (0−) , i = 0, 1, 2, ..., q−1 in terms of coefficient in the Laurent expansion of
A (s)−1 at s =∞ is given in Proposition 1. This result is then generalized by
giving necessary and sufficient conditions for the continuity of β (t) and of all
its derivatives β(i) (t) up to order j ≤ q − 1 and for every set of initial values
at t = 0− : β(i) (0−), i = 0, 1, 2, . . . , q − 1. The results about the continuity
of β(t) and its derivatives at t = 0 preseneted here, are comparable to those
in [6][7] where the notions of consistency and weak constintency have been
introduced.

We thus generalize to the general polynomial matrix case some results
obtained in [2][3] regarding the response and the impulsive behavior of the
generalized state vector x (t) : (0−,∞) → Rn of input free generalized state
space systems i.e. linear systems whose state vector x (t) is governed by the
generalized state space equation

E
·
x (t) = Ax (t) t ≥ 0 (1.3)

where E ∈ Rn×n, A ∈ Rn×n and rankRE ≤ n and which are associated with
finite and infinite zero structure of the matrix pencil sE − A.

2. Background

In this section we review a number of results required in the sequel. This
background comes mainly from [1]. In the following R denotes the field of
reals, R [s] the ring of polynomials, R (s) the field of rational functions and
Rpr (s) the ring of proper rational functions all in the indeterminate s and with
coefficients in R. If k is a set then kp×m denotes the set of p×m matrices with
elements in k. If T (s) ∈ R (s)p×m , δM (T (s)) denotes the McMillan degree of
the T (s) i.e., its total number of poles (finite and at s =∞ and multiplicities
accounted for).

Consider a polynomial matrix

A(s) = Aqs
q + Aq−1s

q−1 + . . . + A0 ∈ R [s]r×r (2.1)

where Ai ∈ Rr×r i = 0, 1, . . . , q, Aq 6= 0 with rankR(s)A(s) = r, q ≥ 1and let

S∞A(s) = diag


v

←−−−−−−−−−−−−→
sq1 , sq2 , · · · , sqk

←−−−−−−−−→
k

, Iv−k,

r−v
←−−−−−−−→

1

sq̂v+1
, · · · , 1

sq̂r

 (2.2)

be the Smith-McMillan form of A(s) at s = ∞ [1] where 0 ≤ k ≤ v ≤ r, and
q1 ≥ q2 ≥ ... ≥ qk > 0 = qk+1 = · · · = qv, q̂r ≥ q̂r−1 ≥ · · · ≥ q̂v+1 > 0 are
respectively the orders of the poles and the zeros at s =∞ of A(s). Then the
following facts hold true:

Fact 1.[1]
q1 = q (2.3)
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Fact 2. The Laurent series expansion at s = ∞ of the rational matrix
A(s)−1 ∈ R (s)r×r has the form [1]

A(s)−1 = Hq̂r
sq̂r + Hq̂r−1s

q̂r−1 + · · ·+ H1s + H0 + H−1s
−1 + H−2s

−2 + · · ·

= Hpol(s) + Hsp(s) (2.4)

where Hpol(s) = Hq̂r
sq̂r +Hq̂r−1s

q̂r−1+· · ·+H1s+H0 ∈ R [s]r×r , Hi ∈ Rr×r, i =

0, 1, . . . , q̂r, Hq̂r
6= 0 and Hsp(s) = H−1s

−1+H−2s
−2+· · · ∈ Rpr (s)r×r is strictly

proper. From the fact that A(s)−1A(s) = Ir, it is obvious that the terms Hi

in (2.4) satisfy the following identities

Hi−q1Aq1 + Hi−q1+1Aq1−1 + ... + HiA0 (2.5)

= Aq1Hi−q1 + Aq1−1Hi−q1+1 + ... + A0Hi = δiIr ,∀i (2.6)

where δi = 0 for i 6= 0 and δ0 = 1 (terms Hi, with i > q̂r are zero).
If we consider the matrix pair [Ir, A(s)] which is trivially right coprime

then from the polynomial matrix (right) division of Ir by A(s) [4] there exist
Q(s), R(s) ∈ R [s]r×r such that

Ir = Q(s)A(s) + R(s) (2.7)

or
A(s)−1 = Q(s) + R(s)A(s)−1 = Hpol(s) + Hsp(s) (2.8)

where Hpol(s) := Q(s) and Hsp(s) := R(s)A(s)−1 . Eq. (2.7) can be written
as [

Ir

A(s)

]
=

[
Ir Q(s)
0r,r Ir

] [
R(s)
A(s)

]
(2.9)

which implies that the pair [R(s), A(s)] is also right coprime and thus we have
Fact 3. δM (Hsp(s)) = deg |A(s)| =: n.
Fact 4. The Smith-McMillan form of Hpol(s) at s =∞ has the form [1]

S∞Hpol(s)
= diag


d

←−−−−−−−−−−−−−−−−−−→
sq̂r , sq̂r−1 , · · · , sq̂v+1

←−−−−−−−−−−−→
r−v

, Id−(r−v),
1

sq̃d+1
, · · · 1

sq̃σ
, 0r−σ,r−σ

 (2.10)

where 1 ≤ (r − v) ≤ d ≤ σ = rankR(s)Hpol(s) and q̃σ ≥ q̃σ−1 ≥ · · · ≥ q̃d+1 > 0
are the orders of the zeros at s =∞ of Hpol(s) i.e. the pole structure at s =∞
of A(s)−1 (which is the zero structure at s = ∞ of A(s)) coincides with the
pole structure at s =∞ of its polynomial part Hpol(s).

Finally let C∞ ∈ Rr×µ, J∞ ∈ Rµ×µ, B∞ ∈ Rµ×r, be an irreducible at
s =∞ [2][3] generalized state space realization of Hpol(s) i.e. let 1

w
Hpol

(
1
w

)
=

C∞ (wIµ − J∞)−1 B∞ so that with 1
w

= s :

Hpol(s) = C∞ (Iµ − sJ∞)−1 B∞ (2.11)
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where [1]

µ = δM

[
1

w
Hpol

(
1

w

)]
=

r∑
i=v+1

(q̂i + 1) + [d− (r − v)] (2.12)

J∞ = block diag
[
0d−(r−v),d−(r−v), J̃∞v+1,J̃∞v+2, . . . , J̃∞r

]
∈ Rµ×µ (2.13)

J̃∞i =



0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0

 ∈ R(q̂i+1)×(q̂i+1) i = v + 1, . . . , r (2.14)

and

rankR


C∞

C∞J∞
...

C∞Jµ−1
∞

 = rankR

[
B∞ J∞B∞ . . . Jµ−1

∞

]
= µ (2.15)

Let also C ∈ Rr×n, J ∈ Rn×n, B ∈ Rn×r be a minimal state space realization
of Hsp(s) with J in Jordan normal form i.e. let

Hsp(s) = C (sIn − J)−1 B (2.16)

Then from (2.4)(2.11) and (2.16) we have
Fact 5.

Hi = C∞J i
∞B∞ i = 0, 1, 2, . . . , q̂r (2.17)

H−i = CJ i−1B i = 1, 2, . . . (2.18)

3. Solution of Linear Homogeneous matrix differential
equations and impulsive behavior of their solution at t = 0

Consider the homogeneous matrix differential equation in (1.1)(1.2). In
this section we examine the solution of (1.1) for every possible value of β (t)
and its derivatives at t = 0− using the Laplace transform method. Let
β (0−) , β(1) (0−) , . . . , β(κ−1) (0−) be the initial values of the pseudo-state β (t)
and its derivatives up to order q − 1 at t = 0 − . As it will be seen in the se-
quel by allowing β (t) and its derivatives β(i) (t), i = 1, 2, . . . to have arbitrary
values at t = 0− we do not guarantee that β (t) is continuous at t = 0 i.e. we
might have that β(i) (0−) 6= β(i) (0+), i = 0, 1, 2, . . .
Considering the L− Laplace transform β̂ (s) of β (t) : β̂ (s) := L−β (t) =∫∞
0− β (t) e−stdt and taking the L− Laplace transform of (1.1) we obtain

L− {A (ρ) β (t)} = A (s) β̂ (s)− α̂ (s) = 0 (3.1)

where A (s) = Aq1s
q1 + Aq1−1s

q1−1 + . . . + A0 ∈ R [s]r×r and

α̂ (s) =
[
sq1−1Ir, s

q1−2Ir, . . . , sIr, Ir

]
4



×



Aq1 0 . . . 0 0
Aq1−1 Aq1 . . . 0 0

...
...

. . .
...

...
A2 A3 . . . Aq1 0
A1 A2 . . . Aq1−1 Aq1





β (0−)

β(1) (0−)
...

β(q1−2) (0−)

β(q1−1) (0−)

 R [s]r×1 (3.2)

is the initial condition vector associated with the initial values β (0−) , β(1) (0−) , . . . , β(q−1) (0−) .
From (3.1) we obtain

β̂ (s) = A (s)−1 α̂ (s) ∈ R (s)r×1 (3.3)

i.e. the L− Laplace transform β̂ (s) of β (t) will be in general a possibly non-
proper rational vector. Going back to (3.3) and using (2.4) and (3.2) for q̂r ≥ q1

(and with appropriate changes for q̂r < q1) we obtain

β̂ (s) =
[
Hq̂r

sq̂r + Hq̂r−1
sq̂r−1 + . . . + H1s + H0 + H−1

1

s
+ . . .

]
α̂ (s)

=
[
sq̂rIr, s

q̂r−1Ir, . . . sIr, Ir,
1

s
Ir, . . .

]


Hq̂r

Hq̂r−1

...
H0

H−1
...


α̂ (s)

=
[
sq̂r+q1−1Ir, s

q̂r+q1−2Ir, . . . , sIr, Ir,
1

s
Ir,

1

s2
Ir . . .

]

×



Hq̂r
0 . . . 0 0

Hq̂r−1 Hq̂r
. . . 0 0

...
...

. . .
...

...
Hq̂r−(q1−1) Hq̂r−(q1−2) . . . Hq̂r−1 Hq̂r

Hq̂r−q1
Hq̂r−(q1−1) . . . Hq̂r−2 Hq̂r−1

Hq̂r−(q1+1) Hq̂r−q1
. . . Hq̂r−3 Hq̂r−2

...
...

. . .
...

...
H−(q1−2) H−(q1−3) . . . H0 H1

H−(q1−1) H−(q1−2) . . . H−1 H0

− − − − −
H−q1 H−(q1−1) . . . H−2 H−1

H−(q1+1) H−q1 . . . H−3 H−2
...

...
...

...


←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

rq1


Aq1 0 . . . 0

Aq1−1 Aq1 . . . 0
...

...
. . .

...
A1 A2 . . . Aq1



×


β (0−)

β(1) (0−)
...

β(q1−1) (0−)


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=
[
sq̂r+q1−1Ir, s

q̂r+q1−2Ir, . . . , sIr, Ir

]


Hq̂r
0 . . . 0

Hq̂r−1 Hq̂r
. . . 0

...
...

. . .
...

Hq̂r−(q1−1) Hq̂r−(q1−2) . . . Hq̂r

...
...

...
H−(q1−1) H−(q1−2) . . . H0



×


Aq1 0 . . . 0

Aq1−1 Aq1 . . . 0
...

...
. . .

...
A1 A2 . . . Aq1




β (0−)

β(1) (0−)
...

β(q1−1) (0−)



+
[
1

s
Ir,

1

s2
Ir . . .

] 
H−q1 H−(q1−1) . . . H−1

H−(q1+1) H−q1 . . . H−2
...

...
...



×


Aq1 0 . . . 0

Aq1−1 Aq1 . . . 0
...

...
. . .

...
A1 A2 . . . Aq1




β (0−)

β(1) (0−)
...

β(q1−1) (0−)


= β̂pol (s) + β̂sp (s) (3.4)

where β̂pol (s) ∈ R [s]r×1 is the polynomial part and β̂sp (s) ∈ Rsp (s)r×1 is the

strictly proper part of β̂ (s) .
Now from (2.5) we obtain the relation

Hq̂r
0 . . . 0

Hq̂r−1 Hq̂r
. . . 0

...
...

. . .
...

Hq̂r−(q1−1) Hq̂r−(q1−2) . . . Hq̂r

− − − −
Hq̂r−q1

Hq̂r−(q1−1) . . . Hq̂r−1

Hq̂r−(q1+1) Hq̂r−q1
. . . Hq̂r−2

...
...

...
...

...
...

H−(q1−2) H−(q1−3) . . . H1

H−(q1−1) H−(q1−2) . . . H0




Aq1 0 . . . 0

Aq1−1 Aq1 . . . 0
...

...
. . .

...
A1 A2 . . . Aq1


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= (−1)



0 0 . . . 0
0 0 . . . 0
...

...
...

0 0 . . . 0
− − − −

Hq̂r
0 . . . 0

Hq̂r−1 Hq̂r
. . . 0

...
...

. . .
...

Hq̂r−(q1−1) Hq̂r−(q1−2) . . . Hq̂r

...
...

...
H2 H3 . . . Hq1+1

H1 H2 . . . Hq1




A0 A1 . . . Aq1−1

0 A0 . . . Aq1−2
...

...
. . .

...
0 0 . . . A0

 (3.5)

so that from (3.4) we have

β̂pol (s) =

sq̂r+q1−1Ir, . . . , s
q̂r+1Ir, s

q̂rIr←−−−−−−−−−−−−−−−−−−→
rq1

|sq̂r−1Ir . . . , sIr, Ir←−−−−−−−−−−→
rq̂r



×



0 0 . . . 0
0 0 . . . 0
...

...
...

0 0 . . . 0
− − − −

Hq̂r
0 . . . 0

Hq̂r−1 Hq̂r
. . . 0

...
...

. . .
...

Hq̂r−(q1−1) Hq̂r−(q1−2) . . . Hq̂r

...
...

...
H2 H3 . . . Hq1+1

H1 H2 . . . Hq1




A0 A1 . . . Aq1−1

0 A0 . . . Aq1−2
...

...
. . .

...
0 0 . . . A0



×


β (0−)

β(1) (0−)
...

β(q1−1) (0−)



= −
[
sq̂r−1Ir . . . , sIr, Ir

]


Hq̂r
0 . . . 0

Hq̂r−1 Hq̂r
. . . 0

...
...

. . .
...

Hq̂r−(q1−1) Hq̂r−(q1−2) . . . Hq̂r

...
...

. . .
...

H2 H3 . . . Hq1+1

H1 H2 . . . Hq1


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×


A0 A1 . . . Aq1−1

0 A0 . . . Aq1−2
...

...
. . .

...
0 0 . . . A0




β (0−)

β(1) (0−)
...

β(q1−1) (0−)

 (3.6)

so that
β̂pol (s) = β q̂r−1s

q̂r−1 + β q̂r−2s
q̂r−2 + . . . + β1s + β0 (3.7)

where βi ∈ Rr×1, i = 0, 1, . . . , q̂r − 1, q̂r ≥ 1 are obtained from the last
expression in (3.6).
Taking the inverse Laplace transform of (3.3) we have

β (t) = L−1
−

{
β̂ (s)

}
= L−1

−

{
A (s)−1 α̂ (s)

}
= L−1

−

{
β̂pol (s)

}
+ L−1

−

{
β̂sp (s)

}
(3.8)

so that from (3.7) (3.8)

L−1
−

{
β̂pol (s)

}
= L−1

−

{
β0 + β1s + . . . + β q̂r−1s

q̂r−1
}

= β0δ (t) + β1δ
(1) (t) + . . . + β q̂r−1δ

(q̂r−1) (t) (3.9)

it follows that if A (s) has at least one zero at s = ∞, i.e. if q̂r ≥ 1 and
(as we will see in section 4) depending on the choice of the initial values
β (0−), β(1) (0−) , . . . , β(q1−1) (0−) , the solution β (t) of (1.1) might exhibit
an ‘impulsive behavior’ at t = 0 which consists of combinations of the Dirac
impulse δ (t) and its (q̂r − 1)-th order distributional derivatives as in (3.9)
which is associated with the zeros at s =∞ of A (s), i.e. due to the fact that
in such a case, the natural modes of (1.1), defined as values of s where A (s)
loses rank, include also the point at s =∞.
What exactly is meant by the phrase in the previous paragraph ‘depending on
the choice of the initial values β (0−), β(1) (0−) , . . . , β(q1−1) (0−)’ and how and
exactly why such a choice of the initial values might give rise to an impulsive
behavior in β (t) at t = 0 is fully explained in Remark 2 in Section 4 bellow.

If A (s) has no zeros at s = ∞ then the Smith-McMillan form of A (s) is
polynomial i.e. in this case

S∞A(s) = diag

 r
←−−−−−−−−−−−−→
sq1 , sq2 , · · · , sqk

←−−−−−−−−→
k

, Ir−k

 ∈ R [s]r×r , q1 ≥ q2 ≥ . . . ≥ qk > 0

(3.10)
which implies that

S∞
A(s)−1 = diag

[
Ir−k,

1

sqk
,

1

sqr−1
, . . . ,

1

sq1

]
∈ Rpr (s)r×r =⇒ A (s)−1 ∈ Rpr (s)r×r

(3.11)
so that the Laurent expansion at s =∞ of A (s)−1 will have the form:

A (s)−1 = H0 + H−1
1

s
+ H−2

1

s2
+ . . . (3.12)

8



and thus (2.5) gives

(q1+1)r

←−−−−−−−−−−−−−−−−−−−−−−−−−−→
H0 0 . . . 0 0
H−1 H0 . . . 0 0
H−2 H−1 . . . 0 0

...
...

. . . . . .
...

H−q1 H−(q1−1) . . . H−1 H0

− − − − −
H−(q1+1) H−q1 . . . H−2 H−1

H−(q1+2) H−(q1+1) . . . H−3 H−2
...

...
...

...





Aq1

Aq1−1
...

A1

A0

 =



0
0
0
...
0
Ir

−
0
0


(3.13)

Then (3.3) gives

β̂ (s) =
[
H0 + H−1

1

s
+ H−2

1

s2
+ . . .

] [
sq1−1Ir . . . , sIr, I

]

×


Aq1 0 . . . 0

Aq1−1 Aq1 . . . 0
...

...
. . .

...
A1 A2 . . . Aq1




β (0−)

β(1) (0−)
...

β(q1−1) (0−)



=


q1r

←−−−−−−−−−−−−−−−−−→
sq1−1Ir, s

q1−2Ir, . . . , sIr, Ir, |
1

s
Ir,

1

s2
Ir . . .





H0 0 . . . 0
H−1 H0 . . . 0

...
...

. . .
...

H−(q1−1) H−(q1−2) . . . H0

− − − −
H−q1 H−(q1−1) . . . H−1

H−(q1+1) H−q1 . . . H−2
...

...
...



×


Aq1 0 . . . 0

Aq1−1 Aq1 . . . 0
...

...
. . .

...
A1 A2 . . . Aq1




β (0−)

β(1) (0−)
...

β(q1−1) (0−)

 (3.14)

but from (3.13)
H0 0 . . . 0
H−1 H0 . . . 0

...
...

. . .
...

H−(q1−1) H−(q1−2) . . . H0




Aq1 0 . . . 0
Aq1−1 Aq1 . . . 0

...
...

. . .
...

A1 A2 . . . Aq1

 = 0q1r×q1r
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and so from (3.14)

β̂ (s) =
[
1

s
Ir,

1

s2
Ir . . .

] 
H−q1 H−(q1−1) . . . H−1

H−(q1+1) H−q1 . . . H−2
...

...
...



×


Aq1 0 . . . 0

Aq1−1 Aq1 . . . 0
...

...
. . .

...
A1 A2 . . . Aq1




β (0−)

β(1) (0−)
...

β(q1−1) (0−)

 =: β̂sp (s) ∈ Rpr (s)r×1 (3.15)

is strictly proper for every set of initial values β (0−), β(1) (0−) ,...,β(q1−1) (0−) .
Conversely if β̂pol (s) = 0 for every set of initial values β (0−) , β(1) (0−) , . . . ,

β(q1−1) (0−) then from (3.6) it follows that we must have that

Hq̂r
0 . . . 0

Hq̂r−1 Hq̂r
. . . 0

...
...

. . .
...

Hq̂r−(q1−1) Hq̂r−(q1−2) . . . Hq̂r

...
...

. . .
...

H2 H3 . . . Hq1+1

H1 H2 . . . Hq1




A0 A1 . . . Aq1−1

0 A0 . . . Aq1−2
...

...
. . .

...
0 0 . . . A0

 = 0q̂rr,q1r

(3.16)
Now (3.16) implies

Hq̂r

[
A0 A1 . . . Aq1−1

]
= 0r,q1r (3.17)

but from (2.5) for i = q̂r + q1

Hq̂r
Aq1 = 0 (3.18)

Combining (3.17) and (3.18) gives

Hq̂r

[
A0 A1 . . . Aq1−1 Aq1

]
= 0r,q1(r+1)

which, since rankR(s)A (s) = r =⇒ rankR

[
A0 A1 . . . Aq1−1 Aq1

]
= r,

(see Exercise 4.10 in [1]) implies that Hq̂r
= 0. Putting Hq̂r

= 0 into (3.16) and
using similar arguments it can be shown successively that Hq̂r−1 = . . . = H1 =

0, i.e. that A (s)−1 ∈ Rpr [s]r×r . In view of the above, the absence of impulsive
behavior from β (t) at t = 0 for every set of initial values is characterized by
the absence from A (s) of zeros at s =∞. These facts can be stated as

Theorem 1. Consider the linear homogeneous matrix differential equation

A (ρ) β (t) = 0 t > 0

where A (ρ) ∈ R [ρ]r×r , rankR(ρ)A (ρ) = r. Then β (t) : (0−,∞) → Rr does
not contain impulses at t = 0 for every set of initial values

β (0−),β(1) (0−),. . .,β(q1−1) (0−), if and only if the following equivalent con-
ditions hold true:
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• (i) β̂ (s) = A (s)−1 α̂ (s) ∈ Rr×1
pr (s) is strictly proper.

• (ii) β̂pol (s) = 0

• (iii) A (s) has no zeros at s =∞

• (iv) A (s)−1 has no poles at s =∞⇐⇒ A (s)−1 ∈ Rpr [s]r×r .

Remark 1. Notice that ‘absence of impulsive behavior from β (t) at t = 0 for
every set of initial values does not necessarily imply continuity of β (t) at t = 0,
i.e. we might have β (0−) 6= β (0+) (see also [5]). A necessary and sufficient
condition for the continuity of β (t) and its derivatives up to order q1 − 1 at
t = 0 for every set of initial values β (0−) , β(1) (0−) , . . . , β(q1−1) (0−) is given
in Proposition 1 in the following section.

4. A Closed formula for the solution of the homogenous
matrix differential equation A (ρ) β (t) = 0. Conditions for

the continuity of the solution.

From (3.6) and (2.17) and after some algebra (see [1]) we obtain

β̂pol (s) = C∞ (sJ∞ − Iµ)−1 J∞xf (0−) (4.1)

where

xf (0−) :=
[

B∞ J∞B∞ . . . Jq1−1
∞

]


A0 A1 . . . Aq1−1

0 A0 . . . Aq1−2
...

...
. . .

...
0 0 . . . A0



×


β (0−)

β(1) (0−)
...

β(q1−1) (0−)

 ∈ Rµ×1 (4.2)

also from the second part of (3.4) and (2.18) after some algebra we obtain that

β̂sp (s) = C (sIn − J)−1 xs (0−) (4.3)

where

xs (0−) :=
[

Jq1−1B Jq1−2B . . . B
]


Aq1 0 . . . 0

Aq1−1 Aq1 . . . 0
...

...
. . .

...
A1 A2 . . . Aq1




β (0−)

β(1) (0−)
...

β(q1−1) (0−)

 ∈ Rn×1 (4.4)
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Combining (4.1)(4.3) with (3.4) we finally obtain

β̂ (s) = β̂sp (s) + β̂pol (s)

=
[

C C∞
] [

sIn − J 0n,µ

0µ,n sJ∞ − Iµ

]−1 [
xs (0−)

J∞xf (0−)

]
(4.5)

Definition 1. [1]The vector

[
xs (0−)

J∞xf (0−)

]
:=

[
In 0n,µ

0µ,n J∞

]  Jq1−1B, Jq1−2B, . . . , B | 0n,q1µ

−−−−−−−−−−− + −−−−−−−−−−−
0µ,q1n | B∞, J∞B∞, . . . , Jq1−1

∞



×



Aq1 0 . . . 0
Aq1−1 Aq1 . . . 0

...
...

. . .
...

A1 A2 . . . Aq1

A0 A1 . . . Aq1−1

0 A0 . . . Aq1−2
...

...
. . .

...
0 0 . . . A0




β (0−)

β(1) (0−)
...

β(q1−1) (0−)

 ∈ R(n+µ)×1 (4.6)

is defined as the state at t = 0− of the homogeneous matrix differential
equation A (ρ) β (t) = 0, t ≥ 0. xs (0−) is the slow state at t = 0− and xf (0−)
is the fast state at t = 0−

Taking the inverse Laplace transform of (4.5) we have

β (t) = L−1
−

{
β̂ (s)

}
= CeJtxs (0−)− C∞

[
δ (t) J∞ + δ (t)(1) J2

∞ + . . . + δ (t)(q̂r−1) J q̂r
∞

]
xf (0−)

So that
β(i) (t) = CJ ieJtxs (0−)

−C∞

[
δ (t)(i) J∞ + δ (t)(i+1) J2

∞ + . . . + δ (t)(i+q̂r−1) J q̂r
∞

]
xf (0−) i = 0, 1, 2, . . .

(4.7)
Since δ(i) (t) = 0 ∀ t 6= 0 equations (4.7) for t = 0+, give:

β(i) (0+) = CJ ixs (0−) i = 0, 1, 2, . . . (4.8)

Writing (4.8) for i = 0, 1, . . . , q1 − 1 in matrix form we get
β (0+)

β(1) (0+)
...

β(q1−1) (0+)

 =


C
CJ
...

CJq1−1

 xs (0−) (4.9)
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Substituting xs (0−) from (4.4) into (4.9) we obtain that in general the relation
between β(i) (0+) and β(i) (0−) for i = 0, 1, 2, . . . q1 − 1 is given by

β (0+)

β(1) (0+)
...

β(q1−1) (0+)



=


C
CJ
...

CJq1−1


[

Jq1−1B Jq1−2B . . . B
]


Aq1 0 . . . 0

Aq1−1 Aq1 . . . 0
...

...
. . .

...
A1 A2 . . . Aq1



×


β (0−)

β(1) (0−)
...

β(q1−1) (0−)



=


CJq1−1B CJq1−2B . . . CB
CJq1B CJq1−1B . . . CJB

...
...

. . .
...

CJ2q1−2B CJ2q1−3B . . . CJq1−1B




Aq1 0 . . . 0
Aq1−1 Aq1 . . . 0

...
...

. . .
...

A1 A2 . . . Aq1



×


β (0−)

β(1) (0−)
...

β(q1−1) (0−)



=


H−q1 H−(q1−1) . . . H−1

H−(q1+1) H−q1 . . . H−2
...

...
. . .

...
H−(2q1−1) H−(2q1−2) . . . H−q1




Aq1 0 . . . 0
Aq1−1 Aq1 . . . 0

...
...

. . .
...

A1 A2 . . . Aq1




β (0−)

β(1) (0−)
...

β(q1−1) (0−)

 (4.10)

where we made use of eq. (2.18).
Equation (4.10) indicates that if A (s) has zeros at s = ∞ and the initial

values β(i) (0−) , i = 0, 1, 2, ...,q1 − 1 are chosen arbitrarily then in general
β(i) (0+) 6= β(i) (0−) for i = 0, 1, 2, . . . , q1−1 i.e. there will be a discontinuity in
β (t) and its derivatives β(i) (t), i = 1, 2, . . .,q1−1 at t = 0. These discontinuities
will be described by the given β(i) (0−) and the β(i) (0+), i = 0, 1, 2, . . . , q1− 1
which are obtained from (4.10). If we demand that β (t) and its derivatives
β(i) (t), i = 1, 2, . . . , q1 − 1 are all continuous at t = 0 so that β(i) (0−) =
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β(i) (0+) , i = 0, 1, 2, . . . q1 − 1 then from (4.10) we see that the given initial
values β(i) (0−), i = 0, 1, . . . , q1 − 1 can not be completely arbitrary but must
satisfy the relation 

β (0−)

β(1) (0−)
...

β(q1−1) (0−)



=


H−q1 H−(q1−1) . . . H−1

H−(q1+1) H−q1 . . . H−2
...

...
. . .

...
H−(2q1−1) H−(2q1−2) . . . H−q1




Aq1 0 . . . 0
Aq1−1 Aq1 . . . 0

...
...

. . .
...

A1 A2 . . . Aq1




β (0−)

β(1) (0−)
...

β(q1−1) (0−)


(4.11)

or equivalently for β (t) and its derivatives β(i) (t), i = 1, 2, . . . , q1 − 1 to be
continuous at t = 0 the given initial values at t = −0 : β(i) (0−) , i =
0, 1, 2, . . . , q1 − 1 must satisfy 

β (0−)

β(1) (0−)
...

β(q1−1) (0−)



∈ ker

Irq1 −


H−q1 H−(q1−1) . . . H−1

H−(q1+1) H−q1 . . . H−2
...

...
. . .

...
H−(2q1−1) H−(2q1−2) . . . H−q1




Aq1 0 . . . 0
Aq1−1 Aq1 . . . 0

...
...

. . .
...

A1 A2 . . . Aq1




(4.12)
or equivalently using (2.5)

β (0−)

β(1) (0−)
...

β(q1−1) (0−)

 ∈ ker


H0 H1 · · · Hq1−1

H−1 H0
...

...
. . . H1

H−q1+1 · · · H−1 H0




A0 A1 · · · Aq1−1

0
. . . . . .

...
...

. . . A0 A1

0 · · · 0 A0


(4.13)

Remark 2. Notice that if A (s) has at least one zero at s = ∞ i.e. if q̂r ≥ 1
then this implies that rankRAq1 < r[1]. In such a case if the initial values

at t = 0− : β(i) (0−) , i = 0, 1, 2, . . . , q1 − 1 are chosen so that (4.13) is not
satisfied i.e. if β(i) (0−) 6= β(i) (0+) , i = 0, 1, 2, . . . , q1−1 then steps that result
from the components of β (t) falling from their initial values in β (0−) to the
values described by β (0+) in (4.10) for t ≥ 0 are differentiated in accordance
with the differential equation A (ρ) β (t) = 0 giving rise to impulsive behavior
in β (t) at t = 0 according to eq. (3.9). If on the other hand the initial values
β(i) (0−) are chosen so that (4.13) is satisfied (equivalently condition (4.9) is
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satisfied with β(i) (0+) = β(i) (0−) , i = 0, 1, 2, . . . , q1 − 1) i.e. if we demand
that β (t) and its derivatives β(i) (t), i = 1, 2, . . . , q1−1 are continuous at t = 0
then the ‘fast state’ at t = 0− : xf (0−) = 0 (see Proposition 3 bellow) and

from (4.1) β̂pol (s) = 0, so that there will be no impulsive behavior in β (t) at
t = 0. In this case condition (4.13) imposes certain restrictions on the choice
of β(i) (0−) , i = 0, 1, 2, . . .,q1 − 1.

Remark 3. Notice that if A (s) is monic i.e. rankRAq1 = r, then A (s) will
be both row and column reduced at s = ∞ [4] and all its row degrees will
be equal to q1 ≥ 1. Consequently A (s) will have no zeros at s = ∞ (i.e.
qi = q1 > 0, i = 1, 2, . . . , r) and its row degrees q1 will be the orders of its
poles at s = ∞, so that the Smith-McMillan form at s = ∞ : S∞A(s) of A (s)
will be given by S∞A(s) = diag [sq1 , sq1 , . . . sq1 ] = sq1Ir. This in turn implies

that A (s)−1 ∈ Rpr (s)r×r will be strictly proper with Smith-McMillan form at

s =∞ : S∞
A(s)−1 =

[
S∞A(s)

]−1
= 1

sq1
Ir. So in this case the Laurent expansion of

A (s)−1at s = ∞ will ‘start’ from the term 1
sq1

H−q1 i.e. H0 = H−1 = H−2 =

. . . = H−(q1−1) = 0 and H−q1 6= 0, so that A (s)−1 = 1
sq1

H−q1+
1

sq1+1 H−(q1+1)+. . .
Due to this fact if rankRAq1 = r condition (4.11) becomes

β (0−)

β(1) (0−)
...

β(q1−1) (0−)



=


H−q1 0 . . . 0

H−(q1+1) H−q1 . . . 0
...

...
. . .

...
H−(2q1−1) H−(2q1−2) . . . H−q1




Aq1 0 . . . 0
Aq1−1 Aq1 . . . 0

...
...

. . .
...

A1 A2 . . . Aq1



×


β (0−)

β(1) (0−)
...

β(q1−1) (0−)

 (4.14)

which is an identity since from (2.5) we have that
H−q1 0 . . . 0

H−(q1+1) H−q1 . . . 0
...

...
. . .

...
H−(2q1−1) H−(2q1−2) . . . H−q1




Aq1 0 . . . 0
Aq1−1 Aq1 . . . 0

...
...

. . .
...

A1 A2 . . . Aq1

 = Iq1r (4.15)
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Conversely if for every β(i) (0−), i = 0, 1, 2, . . .,q1 − 1, β(i) (0−) = β(i) (0+)
from (4.10) it follows that we must have

H−q1 H−(q1−1) . . . H−1

H−(q1+1) H−q1 . . . H−2
...

...
. . .

...
H−(2q1−1) H−(2q1−2) . . . H−q1




Aq1 0 . . . 0
Aq1−1 Aq1 . . . 0

...
...

. . .
...

A1 A2 . . . Aq1

 = Irq1 (4.16)

which implies that both block matrices in (4.16) must have full rank. From
the second block lower triangular matrix in (4.16) this in turn implies that
rankRAq1 = r i.e. that A (s) is monic. These considerations give rise to

Proposition 1. There is no discontinuity in β (t) and its derivatives β(i) (t),
i = 1, 2, . . . q1 − 1 at t = 0 i.e. β(i) (0−) = β(i) (0+) , i = 0, 1, 2, . . . , q1 − 1 for
every set of initial values β(i) (0−), i = 1, 2, . . . , q1− 1 iff A (s) is monic i.e. iff
rankRAq1 = r.

If A (s)−1 ∈ Rpr (s)r×r and we consider only the first equation in (4.11) we
obtain

β (0+)

= Cxs (0−) = C
[

Jq1−1B Jq1−2B . . . B
]


Aq1 0 . . . 0

Aq1−1 Aq1 . . . 0
...

...
. . .

...
A1 A2 . . . Aq1



×


β (0−)

β(1) (0−)
...

β(q1−1) (0−)



=
[

H−q1 H−(q1−1) . . . H−1

]


Aq1 0 . . . 0
Aq1−1 Aq1 . . . 0

...
...

. . .
...

A1 A2 . . . Aq1




β (0−)

β(1) (0−)
...

β(q1−1) (0−)


(4.17)

But from (2.5) we have

[
H−q1 H−(q1−1) . . . H−1 | H0

]


Aq1 0 . . . 0
Aq1−1 Aq1 . . . 0

...
...

. . .
...

A1 A2 . . . Aq1

− − − −
A0 A1 . . . Aq1−1


(4.18)

=
[

Ir 0 0 . . . 0
]
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which can be written as

[
H−q1 H−(q1−1) . . . H−1

]


Aq1 0 . . . 0
Aq1−1 Aq1 . . . 0

...
...

. . .
...

A1 A2 . . . Aq1

 (4.19)

=
[

Ir 0 0 . . . 0
]
−H0

[
A0 A1 . . . Aq1−1

]
so that (4.17) gives

β (0+) = β (0−)−H0

[
A0β (0−) + A1β

(1) (0−) + . . . + Aq1−1β
(q1−1) (0−)

]
(4.20)

which implies that if H0 = 0 i.e. if A (s)−1 is strictly proper then β (t) (but
not necessarily its derivatives) is continuous at t = 0, i.e. β (0+) = β (0−).
Conversely if we require that β (0+) = β (0−) for every set of initial values
β(i) (0−), i = 0, 1, 2, . . . , q1 − 1then from (4.20) it follows that we must have

H0

[
A0 A1 . . . Aq1−1

]
= 0 (4.21)

but from (2.5)
H0Aq1 = 0 (4.22)

Now (4.21) and (4.22) can be written as

H0

[
A0 A1 . . . Aq1−1 Aq1

]
= 0 (4.23)

which again, since rankR(s)A (s) = r =⇒ rankR

[
A0 A1 . . . Aq1−1 Aq1

]
=

r, implies that H0 = 0, i.e. A (s)−1 is strictly proper. The above argument
gives rise to the following

Proposition 2. If A (s)−1 ∈ Rpr (s)r×r then β (t) (but not necessarily its
derivatives) is continuous at t = 0, i.e. β (0+) = β (0−) for every set of initial
values at t = 0− : β(i) (0−), i = 0, 1, 2, . . . , q1 − 1 iff H0 = 0 i.e. iff A (s)−1 is
strictly proper (compare this with Theorem 1).

Remark 4. Similarly it can be shown that if A (s)−1 ∈ Rpr (s)r×r

β(1) (0+) = β(1) (0−)−H−1

[
A0β (0−) + A1β

(1) (0−) + . . . + Aq1−1β
(q1−1) (0−)

]
so that β(1) (t) is continuous at t = 0, i.e. β(1) (0+) = β(1) (0−) for every set
of initial values at t = 0− : β(i) (0−), i = 0, 1, 2, . . . , q1 − 1 iff H−1 = 0. This
result can be generalized by showing that continuity at t = 0 of all derivatives
β(i) (t) of β (t) up to order j ≤ q1 − 1 and for every set of initial values at
t = 0− : β(i) (0−), i = 0, 1, 2, . . . , q1 − 1 is guaranteed iff H0 = H−1 =
H−2 = . . . = H−j = 0. (Note that j ≤ q1 − 1 because otherwise the conditions
H0 = H−1 = H−2 = . . . = H−(q1−1) = H−q1 = 0 would imply that A (s) has a
pole at s =∞ of order greater than q1).
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Finally we state

Proposition 3. Assume that the given initial values β(i) (0−),
i = 0, 1, 2, . . . , q1 − 1 satisfy (4.13) so that β (t) and its derivatives β(i) (t),i =
1, 2, . . . , q1 − 1 are all continuous at t = 0 i.e. β(i) (0−) = β(i) (0+) =: β(i) (0) ,
i = 0, 1, 2, . . . , q1 − 1. Then xf (0−) = 0 and the solution of (1.1) is given by
β (t) = CeJtxs (0−) where xs (0−) is given by (4.4)

Proof. [1].

Example 1. Consider the system of differential equations

·
β1 (t) +

...

β2 (t) = −β1 (t)
.

β2 (t) = −β2 (t)
t ≥ 0

which can be written in matrix form as[
ρ + 1 ρ3

0 ρ + 1

] [
β1 (t)
β2 (t)

]
=

[
0
0

]

or A (ρ) β (t) = 0, β (t) :=
[

β1 (t) β2 (t)
]>

, r = 2, q = 3 where

A (ρ) =

[
1 0
0 1

]
+

[
1 0
0 1

]
ρ +

[
0 0
0 0

]
ρ2 +

[
0 1
0 0

]
ρ3

Now the Smith McMillan form of A (s) at s =∞ is S∞A(s) = diag [s3, 1/s] , i.e.
A (s) has a pole at s = ∞ of order q = q1 = 3 and a zero at s = ∞ of order
q̂2 = 1 and thus A (s)−1 is a non-proper rational matrix:

A (s)−1 =

 1
s+1

−s3

(s+1)2

0 1
s+1


=

 1
s+1

− (3s+2)

(s+1)2

0 1
s+1

 +

[
0 2− s
0 0

]
= Hsp (s) + Hpol (s)

from which we obtain that H1 =

[
0 −1
0 0

]
, H0 =

[
0 2
0 0

]
, Hj = 02,2 for

j > 1, and by long division 1
s+1

= 1s−1− 1s−2 + 1s−3 + . . . , −(3s+2)
(s+1)

= −3s−1 +

4s−2 − 5s−3 + . . . i.e.

H−1 =

[
1 −3
0 1

]
, H−2 =

[
−1 4
0 −1

]
, H−3 =

[
1 −5
0 1

]
. . .

From condition 4.13 for β (t) and its derivatives β(i) (t), i = 1, 2 to be con-
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tinuous at t = 0 so that β(i) (0−) = β(i) (0+) , i = 0, 1, 2 the initial values at

t = 0− ,β
(i)
j (0−) , j = 1, 2, i = 0, 1, 2 must satisfy

 β (0−)

β(1) (0−)

β(2) (0−)

 ∈ ker

 H0 H1 H2

H−1 H0 H1

H−2 H−1 H0


 A0 A1 A2

0 A0 A1

0 0 A0



= ker



0 2 0 −1 0 0
0 0 0 0 0 0
1 −3 0 2 0 −1
0 1 0 0 0 0
−1 4 1 −3 0 2
0 −1 0 1 0 0





1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 0 0 1



= ker



0 2 0 1 0 −1
0 0 0 0 0 0
1 −3 1 −1 0 1
0 1 0 1 0 0
−1 4 0 1 1 −1
0 −1 0 0 0 1



A basis for the right kernel of the above matrix is:





2
1
−1
−1
0
1


,



1
0
−1
0
1
0




and

thus we must have that

 β (0−)

β(1) (0−)

β(2) (0−)

 =



β1 (0−)
β2 (0−)

β
(1)
1 (0−)

β
(1)
2 (0−)

β
(2)
1 (0−)

β
(2)
2 (0−)


= α



2
1
−1
−1
0
1


+ β



1
0
−1
0
1
0


, α, β ∈ R (4.24)

from which we obtain that α = β2 (0−) , β = β1 (0−)− 2β2 (0−) so that from

4.24 we obtain that β
(i)
j (0−) , j = 1, 2, i = 0, 1, 2 must satisfy the conditions

β
(1)
1 (0−) = −β1 (0−) + β2 (0−) (4.25)

β
(1)
2 (0−) = −β2 (0−) (4.26)

β
(2)
1 (0−) = β1 (0−)− 2β2 (0−) (4.27)

β
(2)
2 (0−) = β2 (0−) (4.28)
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An irreducible at s =∞ generalized state space realization of the polynomial

part Hpol (s) =

[
0 2− s
0 0

]
of A (s)−1 is given by the triple

C∞ =

[
0 1
0 0

]
, J∞ =

[
0 0
1 0

]
, B∞ =

[
0 −1
0 2

]

Formula (4.2) gives

xf (0−) =
[

B∞, J∞B∞, J2
∞B∞

]  A0 A1 A2

0 A0 A1

0 0 A0


 β (0−)

β(1) (0−)

β(2) (0−)



=

[
0 −1 | 0 0 | 0 0
0 0 | 0 −1 | 0 0

]


1 0 | 1 0 | 0 0
0 1 | 0 1 | 0 0
− − | − − | − −
0 0 | 1 0 | 1 0
0 0 | 0 1 | 0 1
− − | − − | − −
0 0 | 0 0 | 1 0
0 0 | 0 0 | 0 1



×



β1 (0−)
β2 (0−)
−

β
(1)
1 (0−)

β
(1)
2 (0−)
−

β
(2)
1 (0−)

β
(2)
2 (0−)


=

[
−β2 (0−)− β

(1)
2 (0−)

2β2 (0−) + β
(1)
2 (0−)− β

(2)
2 (0−)

]
4.25−4.28

=

[
0
0

]
(4.29)

i.e. we have that xf (0−) = 0 and thus from (4.1)

β̂pol (s) = C∞ (sJ∞ − Iµ)−1 J∞xf (0−) = 0

as in Proposition 3 so that β∞ (t) := L−1
−

{
β̂pol (s)

}
= 0, and there is no

impulsive behavior in β (t) at t = 0.
A minimal realization C, J,B of the strictly proper part of A (s)−1 :

Hsp (s) =

[ 1
s+1

− 3s+2
(s+1)2

0 1
s+1

]
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is given by C =

[
1 −3
0 1

]
, J =

[
−1 1
0 −1

]
, B =

[
1 0
0 1

]
, (n = 2) and

formula (4.4) gives

xs (0−) :=
[

J2B JB B
]  A3 0 0

A2 A3 0
A1 A2 A3


 β (0−)

β(1) (0−)

β(2) (0−)



=

[
1 −2 | −1 1 | 1 0
0 1 | 0 −1 | 0 1

]

×



0 1 | 0 0 | 0 0
0 0 | 0 0 | 0 0
− − | − − | − −
0 0 | 0 1 | 0 0
0 0 | 0 0 | 0 0
− − | − − | − −
1 0 | 0 0 | 0 1
0 1 | 0 0 | 0 0





β1 (0−)
β2 (0−)
−

β
(1)
1 (0−)

β
(1)
2 (0−)
−

β
(1)
2 (0−)

β
(2)
2 (0−)


=

[
β1 (0−) + β2 (0−)− β

(1)
2 (0−) + β

(2)
2 (0−)

β2 (0−)

]
=

[
xs1 (0−)
xs2 (0−)

]
which due to the constraints 4.25-4.12 gives that

xs (0−) =

[
xs1 (0−)
xs2 (0−)

]
=

[
β1 (0−) + 3β2 (0−)

β2 (0−)

]
= x (0)

and thus the solution of the d.e. is

β (t) =

[
β1 (t)
β2 (t)

]
= L−1

{
β̂sp (s)

}
= L−1

{
C (sIn − J)−1 xs (0−)

}
= CeJtxs (0−) =

[
1 −3
0 1

] [
e−t te−t

0 e−t

] [
β1 (0−) + 3β2 (0−)

β2 (0−)

]

=

[
e−t te−t − 3e−t

0 e−t

] [
β1 (0−) + 3β2 (0−)

β2 (0−)

]

i.e.
β1 (t) = β1 (0−) e−t + β2 (0−) te−t

β2 (t) = β2 (0−) e−t t ≥ 0

which for t = 0+ and due to conditions 4.25-4.12 gives that β
(j)
1 (0+) =

β
(j)
1 (0−) , β

(j)
2 (0+) = β

(j)
2 (0−) , j = 0, 1, 2 i.e that β (t),β(1) (t) , β(2) (t) are

continuous at t = 0.
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