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Abstract In this paper we investigate the behavior of the
discrete time AR (Auto Regressive) representations over a finite time
interval, in terms of the finite and infinite spectral structure of the

polynomial matrix involved in the AR-equation. A boundary mapping
equation and a closed formula for the determination of the solution, in

terms of the boundary conditions, are also gived.

1. Introduction

The class of discrete time descriptor systems has been the subject of several
studies in the recent years (see for example [1], [2], [3],[4], [5], [6]). The main
reason for this is that descriptor equations naturally represent a very wide class
of physical, economical or social systems. One of the most interesting features
of discrete time singular systems is without doubt their non causal behavior,
while their counterpart in continuous time exhibit impulsive behavior.

However, descriptor systems can be considered as a special - first order
case of a more general Auto Regressive Moving Average (ARMA) multivari-
able model and thus the study of this more general case can be proved to
be very important. Such models (known also as polynomial matrix descrip-
tions or PMDs) have been extensively studied in the continuous time case by
several authors. In this note we investigate some structural properties of the
discrete time autoregressive (AR)-representation, as a first step towards the
generalization of the descriptor systems theory to the higher order case.

Consider the discrete time AR equation

Aqxk+q + Aq−1xk+q−1 + ... + A0xk = 0 (1.1)

where k = 0, 1, 2, ..., N − q, or equivalently

A(σ)xk = 0, k = 0, 1, 2, ..., N − q (1.2)
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where A(σ) = Aqσ
q + Aq−1σ

q−1 + ... + A0 ∈ <r×r[σ] is a regular polynomial
matrix, i.e. det A(σ) 6= 0 for almost every σ, xk ∈ <r, k = 0, 1, 2, ..., N is a
vector sequence and σ denotes the forward shift operator σxk = xk+1. Notice
that we are interested for the behavior of (1.2) over a specified time interval
k = 0, 1, 2, ..., N and not over Z+.

The matrix Aq is not in general invertible which means that (1.1) can not
be solved by iterating forward, i.e. given x0, x1, ..., xq−1 determine successively
xq, xq+1, .... This is the main reason why we treat this equation as a boundary
condition problem, where both the initial and final conditions should be given.
This naturally leads to the restriction of the time domain to a finite interval
instead of Z+.The results of the present paper should be compared to [1],
[2], [3], [4], [5], [6] where similar problems for systems in descriptor form, are
treated in a similar manner.

Finally, following the notation of [12] we define the behavior of (1.2) as

B = {xk / xk ∈ <r, xk satisfies (1.2)} (1.3)

where k = 0, 1, 2, ..., N.

2. Preliminaries - Notation

The mathematical background required for this note comes mainly from
[7], [8], [9], [10] and [11]. By <m×n[σ] we denote the set of m × n polyno-
mial matrices with real coefficients and indeterminate σ. A square polynomial
A(σ) = Aqσ

q + Aq−1σ
q−1 + . . . + A0 ∈ <r×r[σ] matrix is called regular iff

det A(σ) 6= 0 for almost every σ. The (finite) eigenvalues of A(σ) are defined
as the roots of the equation det A(σ) = 0. Let

Sλi

A(σ) = diag{(σ − λi)
mi1 , ..., (σ − λ)mir}

be the local Smith form of A(σ) at σ = λi and λi is an eigenvalue of A(σ),
where 0 ≤ mi1 ≤ mi2 ≤ ... ≤ mir. The terms (σ − λi)

mij are called the
(finite) elementary divisors of A(σ) at σ = λi, mij j = 1, 2, ..., r are the partial
multiplicities of λi and mi =

∑r
j=1 mij is the multiplicity of λi.

The dual matrix of A(σ) is defined as Ã(σ) = σqA(σ−1) = A0σ
q +A1σ

q−1 +
. . . + Aq. The infinite elementary divisors of A(σ) are the finite elementary
divisors of the dual Ã(σ) at σ = 0. The total number of elementary divisors
(finite and infinite) of A(σ) is equal to the product r × q, where r is the
dimension and q is the degree of A(σ).

A pair of matrices Xi ∈ <r×mi , Ji ∈ <mi×mi , where Ji is in Jordan form
and λi is an eigenvalue of A(σ)of multiplicity mi is called an eigenpair of A(σ)
corresponding to λi iff

q∑
k=0

AkXiJ
k
i = 0, rank col(XiJ

k
i )mi−1

k=0 = mi (2.1)
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where col(XiJ
k
i )mi−1

k=0 =


Xi

XiJi
...

XiJ
mi−1
i

 . The matrix Ji consists of Jordan blocks

with sizes equal to the partial multiplicities of λi.
Let λ1, λ2, ..., λp be the distinct finite eigenvalues of A(σ), and (Xi, Ji) their

corresponding eigenpairs. The total number of finite elementary divisors is
equal to the determinantal degree of A(σ), i.e. n = deg(det A(σ)) =

∑p
i=1 mi.

The pair of matrices

XF = [X1, X2, ..., Xp] ∈ <r×n (2.2)

JF = diag{J1, J2, ..., Jp} ∈ <n×n (2.3)

is defined as a finite spectral pair of A(σ) and satisfies the following

q∑
k=0

AkXF Jk
F = 0, rank col(XF Jk

F )n−1
k=0 = n (2.4)

An eigenpair of the dual matrix Ã(σ) corresponding to the eigenvalue λ̃ = 0
is defined as an infinite spectral pair of A(σ), and satisfies the following

q∑
k=0

AkX∞Jq−k
∞ = 0, rank col(X∞Jk

∞)µ−1
k=0 = µ (2.5)

where X∞ ∈ <r×µ, J∞ ∈ <µ×µ.

3. Main Results

Consider the AR-representation (1.2) and a finite spectral pair (XF , JF ) of
A(σ). In the continuous time case, i.e. where σ = d

dt
is the differential operator

instead of the forward shift operator, finite spectral pairs give rise to linearly
independent solutions. A similar situation occurs in our case. We state the
following theorem

Theorem 1. If (XF , JF ) is a finite (If (X∞, J∞) is an infinite) spectral pair of
A(σ) of dimensions r×n, n×n (r×µ, µ×µ) respectively where n = deg |A(σ)|
(µ is the multiplicity of the eigenvalue at σ = ∞ of A(σ)) then the columns of
the matrix

ΨF (k) = XF Jk
F , k = 0, 1, 2, ..., N (3.1)

(Ψ∞(k) = X∞JN−k
∞ , k = 0, 1, 2, ..., N) (3.2)

are linearly independent solutions of (1.2) for N ≥ n (N ≥ µ).

Proof. Let (XF , JF ) be a finite spectral pair of A(σ) . We have

A(σ)XF Jk
F =

q∑
i=0

AiXF Jk+i
F =

= (
q∑

i=0

AiXF J i
F )Jk

F

(2.4)
= 0
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for k = 0, 1, 2, ..., N − q and from the second equation of (2.4) it is obvious
that the columns of XF Jk

F are linearly independent sequences over any interval
k = 0, 1, 2, ..., N ≥ n. The proof of (3.2) follows similarly if we take into
account (2.5).

The above theorem proves that we can form solutions of (1.2) as linear
combinations of the columns of the matrices ΨF (k) and Ψ∞(k). It remains to
show that the columns of these two matrices are enough to span the entire
solution space of the equation over a finite interval k = 0, 1, 2, ..., N.

Consider equation (1.2) or equivalently the more detailed form (1.1). Then
one can write this equation in the following form

RN+1(A)x̄N+1 = 0 (3.3)

where RN+1(A) is the resultant matrix of A(σ) having N + 1 block columns

RN+1(A) =


A0 A1 · · · Aq 0 · · · 0

0 A0 A1 · · · Aq
. . .

...
...

. . . . . . . . . . . . 0
0 · · · 0 A0 A1 · · · Aq

 (3.4)

where RN+1(A) ∈ <r(N−q+1)×r(N+1) and x̄N+1 = [ xT
0 xT

1 · · · · · · xT
N ]T ∈

<r(N+1). Obviously equations (1.2) and (1.1) are equivalent to (3.3) in the
specified time interval k = 0, 1, 2, ..., N.

With this simple remark and using the theory for the kernels of resultant
matrices of a polynomial matrix, we can state the following very important

Theorem 2. The behavior of the AR-representation (1.2) over the finite time
interval k = 0, 1, 2, ..., N is

B = span[XF , X∞]{Jk
F ⊕ JN−k

∞ } (3.5)

and
dimB = rq

where r, q are respectively the dimension of A(σ) and the maximum order of σ
in A(σ), (XF , JF ) is a finite spectral pair of A(σ) and (X∞, J∞) is an infinite
spectral pair of A(σ).

Proof. Consider equation (3.3). Obviously the solution space of this equation
is the kernel of RN+1(A). Then the behavior of (1.2) is clearly isomorphic to
the solution space of (3.3), i.e.

B ' KerRN+1(A) (3.6)

But from theorem 1.1 in [10] we have as a special case that

KerRN+1(A) = Im col(XF J i
F )N

i=0 ⊕ Im col(X∞JN−i
∞ )N

i=0 (3.7)
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The dimensions of XF , JF , X∞, J∞ are r×n, n×n, r×µ and µ×µ respectively,
where n = deg |A(σ)| is the total number of finite elementary divisors , µ is
the total number of infinite elementary divisors (multiplicities encountered for
in both cases) and n + µ = rq (see [8]). Furthermore it is known [8] that
the columns of col(XF J i

F , X∞JN−i
∞ )N

i=0 are linearly independent. On the other
hand from the regularity assumption of A(σ) we have

rankRN+1(A) = (N − q + 1)r

(this is a well known result, see for example [11] exercise 4.10) and thus

dim KerRN+1(A) = rq (3.8)

Obviously (3.6),(3.7) and (3.8) prove that the columns of the matrix

[XF , X∞]{Jk
F ⊕ JN−k

∞ }

form indeed a basis of B and consequently dimB = rq.
It is clear that the solution space B can be decomposed into two subspaces

the one corresponding to the finite eigenstructure of the polynomial matrix
and the other corresponding to the infinite one, i.e.

B = BF ⊕ BB

where BF = Im col(XF J i
F )N

i=0 and BB = Im col(X∞JN−i
∞ )N

i=0 (the subscripts
F, B are the initials of the words Forward and Backward)

The first part BF gives rise to solutions moving in the forward direc-
tion of time and reflects the forward propagation of the initial conditions
x0, x1, ..., xq−1, while the second part BB gives solutions moving backwards
in time, i.e. from N to 0.

This discussion should be compared to that in [1], [2], [3]. Notice that
the above decomposition of the solution space into forward and backward
subspaces, corresponds to a maximal forward decomposition of the descriptor
space in [3].

A very interesting problem is to determine a closed formula for the solution
of (1.2) when boundary condition are given. The reason why we have to choose
both initial and final conditions is obvious, after the above discussion about
the behavior of (1.2).

Theorem 3. Given the initial conditions vector x̂I = [ xT
0 xT

1 · · · xT
q−1 ]T ∈

<rq and the final conditions vector x̂F = [ xT
N−q+1 xT

N−q+2 · · · xT
N ]T ∈ <rq,

(1.2) has the unique solution

xk =
[

XF Jk
F MF X∞JN−k

∞ M∞
] [

x̂I

x̂F

]
(3.9)

for k = 0, 1, 2, ..., N, iff the vectors x̂I , x̂F satisfy the compatibility boundary
condition [

x̂I

x̂F

]
∈ ker

[
JN−q+1

F MF −MF

−M∞ JN−q+1
∞ M∞

]
(3.10)
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where MF ∈ <n×rq, M∞ ∈ <µ×rq are defined by[
MF

M∞

]
= (col(XF J i−1

F , X∞Jq−i
∞ )q

i=1)
−1 ∈ <rq×rq (3.11)

Proof. Every solution xk , k = 0, 1, 2, ..., N of (1.2) will be a linear combina-
tion of the basis of B, i.e. there exists a vector ζ ∈ <rq such that

xk =
[

XF X∞
]
{Jk

F ⊕ JN−k
∞ }ζ (3.12)

for k = 0, 1, 2, ..., N. Our aim is to determine ζ in terms of the given initial
- final conditions. The initial conditions vector will be given by (3.12) for
k = 0, 1, 2, ..., q − 1. Thus

x̂I = col(XF J i, X∞JN−i
∞ )q−1

i=0 ζ

or equivalently

x̂I = Q

[
In 0
0 JN−q+1

∞

]
ζ (3.13)

where the matrix Q = col(XF J i−1
F , X∞Jq−i

∞ )q
i=1 in the above equation is in-

vertible (see decomposable pairs in [8]). At this point it would be useful to
partition ζ = [ ζT

F ζT
∞ ]T , where ζF and ζ∞ have appropriate dimensions.

Now from (3.13) using the definition of MF , M∞ in (3.11) we obtain

ζF = MF x̂I (3.14)

JN−q+1
∞ ζ∞ = M∞x̂I

Notice that (3.14) determines ζF but not ζ∞. Following similar lines for the
final conditions vector we obtain

ζ∞ = M∞x̂F (3.15)

JN−q+1
F ζF = MF x̂F

Similarly (3.15) determines ζ∞ but not ζF . Now using the first equations in
(3.14) and (3.15) we obtain

ζ =

[
ζF

ζ∞

]
=

[
MF 0
0 M∞

] [
x̂I

x̂F

]

which in view of (3.12) gives the solution formula (3.9), and combining the
second equations in (3.14) and (3.15) we obtain the boundary compatibility
condition [

JN−q+1
F MF −MF

−M∞ JN−q+1
∞ M∞

] [
x̂I

x̂F

]
= 0

which is obviously identical to (3.10).
Notice that equation (3.10) plays the role of the boundary mapping equa-

tion in [2] and it can be considered as a direct generalization of it. Equation
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(3.10) summarizes the restrictions posed at both end points of the time inter-
val by the system and with an appropriate choice of boundary conditions by
(3.9) we can determine uniquely all the intermediate values of xk.

For simplicity of notation and following similar lines with [2], we set

Z(0, N) =

[
JN−q+1

F MF −MF

−M∞ JN−q+1
∞ M∞

]
∈ <rq×2rq

and we prove the following

Theorem 4. rankZ(0, N) = rq.

Proof. We set
N = col(XF J i−1

F , X∞Jq−i
∞ )q

i=1

then from (3.11) we have [
MF

M∞

]
N =

[
In 0
0 Iµ

]
(3.16)

Now, post-multiply Z(0, N) by diag{N, N} which has obviously full rank
and use (3.16). We have

Z(0, N)

[
N 0
0 N

]
=

=

[
JN−q+1

F 0 −In 0
0 −Iµ 0 JN−q+1

∞

]

Obviously the matrix on the right hand side of the above equation has full
row rank and hence

rankZ(0, N) = rq (3.17)

This result should be compared to theorem 1 in [2], where it is proved that
a boundary mapping matrix of full rank exists if and only if the correspond-
ing descriptor system is solvable and conditionable. In our case the system
is obviously solvable, since we have already determined a solution and condi-
tionable since we have proved that the boundary conditions satisfying (3.10)
characterize uniquely the solution. However solvability and conditionability of
(1.2) can be easily checked using rank tests as in [1], but in our case this would
be trivial due the regularity of A(σ).

It is important to notice here that (3.17) implies

dim ker Z(0, N) = rq = dimB

which means that the initial and final conditions vectors are chosen from a
rq−dimensional vector space. Thus rq is the total number of arbitrarily as-
signed values, distributed at both end points of the time interval. The con-
nection between dim ker Z(0, N) and dimB is obvious.
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4. Example

In order to illustrate the above results we shall give an example which ex-
hibits only backward behavior. This is done for brevity reasons, while it is well
known that the finite eigenstructure of A(σ) gives rise to forward linearly inde-
pendent solutions (see for example [8]). Consider the unimodular polynomial
matrix

A(σ) =

[
1 σ2

0 1

]
Obviously there are no finite elementary divisors and thus no finite spectral
pairs, since det A(σ) = 1. Consider also the AR equation

A(σ)xk = 0

for k = 0, 1, 2, ..., N − q. According to the notation used earlier we have q = 2
and r = 2 and thus we have to expect

dimB =rq = 4

Indeed, consider an infinite spectral pair of A(σ)

X∞ =

[
1 0 0 0
0 0 −1 0

]
, J∞ =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


Then according to theorem 3, a basis of B = BB is formed by the columns

of the matrix

Ψ(k) = X∞JN−k
∞ =

=

[
δN−k δN−k−1 δN−k−2 δN−k−3

0 0 −δN−k −δN−k−1

]

where δi = 0 for i 6= 0 and δ0 = 1. The boundary mapping equation will be

Z(0, N) = [−M∞, JN−q+1
∞ M∞]

since there is no finite spectral pair. Now we can see that

M∞ =


0 0 1 0
1 0 0 0
0 0 0 −1
0 −1 0 0


and thus for N > 4, we have JN−q+1

∞ = 0

Z(0, N) =


0 0 −1 0 0 0 0 0
−1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0


8



which has full row rank. Obviously by (3.10) the final conditions can be
freely assigned while for N > 4 the initial conditions must be zero. This is
natural because, the infinite spectral pair of A(σ) gives rise to reversed in time
deadbeat modes, which after four steps of backward propagation of the final
conditions, become zero. The intermediate solution formula can be obtained
by (3.9)

xk = X∞JN−k
∞ M∞x̂F =

=

[
δN−k−1 −δN−k−3 δN−k −δN−k−2

0 δN−k−1 0 δN−k

]
x̂F

where no initial conditions are involved because there is no finite spectral pair
of A(σ).

5. Conclusions

In this note we have determined the solution space or the behavior B of
the discrete time Auto-Regressive representations having the form A(σ)xk = 0,
where the matrix A(σ) is a square regular polynomial matrix and xk is a vector
sequence over a finite time interval k = 0, 1, 2, .., N . The solution space B is
proved to be a linear vector space, of dimension equal to the product of the
dimension r of the matrix A(σ) and the highest degree of σ occurring in the
polynomial matrix.

It is also shown that the behavior can be decomposed into a direct sum
of the forward and backward subspace, which corresponds to a maximal F/B
decomposition of the descriptor space in [3]. We have also determined a basis
for the solution space, using a construction based on both the finite and infinite
spectral structure of A(σ).

We introduce the notion of the dual AR representation which is simply the
same system but with reversed time direction. Finally, a generalization of the
boundary mapping defined for first order systems in [2], to the higher order
case is given and it is shown that such a boundary mapping can be obtained
in terms of the spectral pairs of A(σ).

References

[1] Luenberger D.G.,’Dynamic Equations in Descriptor Form’, IEEE Trans
.Autom. Contr., Vol-22, No 3, June 1977, pp. 312-321.

[2] Luenberger D.G., ’Boundary Recursion for Descriptor Variable Systems’,
IEEE Trans .Autom. Contr., Vol-34, No 3, (1989), pp. 287-292.

[3] Lewis F. L., ’Descriptor Systems: Decomposition into Forward and Back-
ward Subsystems’, IEEE Trans .Autom. Contr., Vol-29, No 2, (1984), pp.
167-170.

[4] Lewis F. L., B.G.Mertzios, ”On the Analysis of Discrete Linear Time-
Invariant Singular Systems”, IEEE Trans. Autom. Contr., Vol 35, No 4,
(1990), pp.506 - 511.

9



[5] Lewis F. L., ”A Survey of Linear Singular Systems”, Circuits Systems and
Signal Processing, Vol 5, No 1, (1986), pp.3 - 36.

[6] Nikoukhah R, Willsky A., Bernard C. Levy, ”Boundary-value descriptor
systems: well-posedness, reachability and observability”, Int. J. Control,
Vol 46, (1987), 1715 - 1737.

[7] Gantmacher F.R.,’Matrix Theory’, Chelsea Publishing Company, (1971),
New York.

[8] Gohberg I., Lancaster P., Rodman L., ’Matrix Polynomials’, Academic
Press Inc, (1982), New York.

[9] Gohberg I., Kaashoek M.A., Lerer L., Rodman L., ”Common Multiples
and Common Divisors of Matrix Polynomials, I. Spectral Method”, Indi-
ana Journal of Math. 30, (1981),pp.321-356.

[10] Gohberg I., Kaashoek M.A., Lerer L., Rodman L., ”Common Multiples
and Common Divisors of Matrix Polynomials, II. VanderMonde and Re-
sultant Matrices”, Linear and Multilinear Algebra, Vol 12, (1982), pp.
159 - 203.

[11] Vardulakis A.I.G., ’Linear Multivariable Control - Algebraic Analysis and
Synthesis Methods’, Willey, (1991), New York.

[12] Willems J.C., ’Paradigms and Puzzles in the Theory of Dynamical Sys-
tems’, IEEE Trans. Autom. Contr., Vol 36, No 3, (1991), pp. 259-294.

10


