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Abstract

A new algorithm is presented for the determination of
the generalized inverse and the drazin inverse of a poly-
nomial matrix. The proposed algorithms are based on
the discrete Fourier transform and thus are computa-
tionally fast in contrast to other known algorithms.
The above algorithms are implemented in the Math-
ematica programming language and illustrated via ex-
amples.

1 Introduction

The first definition in the literature for a generalized in-
verse for nonsquare constant matrices is due to Penrose
[11], while later Decell [2] proposed a Leverrier-Faddeev
algorithm for its computation. A Leverrier-Faddeev al-
gorithm has also been proposed by Grevile [4] for the
computation of the Drazin inverse of square constant
matrices. Karampetakis in [8] and later [7], [9] and [12]
have proposed new Leverrier algorithms for the deter-
mination of the generalized inverse and Drazin inverse
of polynomial matrices. These algorithms are good
enough if we implement them in symbolic program-
ming languages like Mathematica, Maple etc.. However
their main disadvantage is the same with all the known
Leverrier algorithms : are not stable if they are imple-
mented in other high level programming languages such
as C++, Fortran etc.

During the past two decades there has been extensive
use of Discrete Fourier Transform (DFT) - based algo-
rithms, due to their computational speed and accuracy.
Some remarkable examples, but not the only, of the use
of DFT in linear algebra problems are the calculation of
the determinantal polynomial by [10], the computation
of the transfer function of generalized n-dimensional
systems by [1] and the solutions of polynomial matrix
Diophantine equations by [6].
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The reason for the interest in these two specific inverses
are due to their applications in inverse systems, solu-
tion of AutoRegressive Moving Average representations
[5] and solution of Diophantine equations which gives
rise to numerous applications (see for example [8] and
its references).

The main purpose of this work is to present a DFT-
algorithm for the evaluation of the generalized inverse
and the Drazin inverse of a polynomial matrix. More
specifically in section 2 we introduce the 2-dimensional
discrete Fourier transform, while later in section 3 and
4 we propose two new DFT algorithms for the evalua-
tion of the generalized and Drazin inverse respectively
of a polynomial matrix. Finally in section 5 we present
a benchmark of the effectiveness of the algorithms im-
plemented in Mathematica in comparison to the meth-
ods presented in section 6 of [9].

2 The discrete Fourier transform

Consider the finite sequence X(k) and X̃(r) k, r =
0, 1, ...,M . In order for the sequence X(k) and X̃(r) to
constitute an DFT pair the following relations should
hold [3] :

X̃(r) =
M∑

k=0

X(k)W−kr (1)

X(k) =
1

M + 1

M∑
r=0

X̃(r)W kr (2)

where
W = e

2πj
M+1 (3)

X, X̃ are discrete argument matrix-valued functions,
with dimensions p×m.

Consider now the finite sequence X(k1, k2) and
X̃(r1, r2), ki, ri = 0, 1, ...,Mi, i = 1, 2. In order for
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the sequence X(k1, k2) and X̃(r1, r2) to constitute an
DFT pair the following relations should hold [3] :

X̃(r1, r2) =
M1∑

k1=0

M2∑

k2=0

X(k1, k2)W−k1r1
1 W−k2r2

2 (4)

X(k1, k2) =
1
R

M1∑
r1=0

M2∑
r2=0

X̃(r1, r2)W k1r1
1 W k2r2

2 (5)

where

R = (M1 + 1)× (M2 + 1) (6)

Wi = e
2πj

Mi+1 , i = 1, 2

X, X̃ are discrete argument matrix-valued functions,
with dimensions p×m.

3 Generalized inverse of a polynomial matrix

Consider the polynomial matrix

A(s) = Aqs
q + · · · = A1s + A0 ∈ R[s]p×m (7)

with Ai ∈ Rp×m, i ∈ q, and p not necessarily equal to
m.

Definition 1 [11] For every matrix A ∈ Rp×m, a
unique matrix A+ ∈ Rm×p, which is called generalized
inverse, exists satisfying

(i) AA+A = A

(ii) A+AA+ = A+

(iii) (AA+)T = AA+

(iv) (A+A)T = A+A

where AT denotes the transpose of A. In the special
case that the matrix A is square nonsingular matrix,
the generalized inverse of A is simply its inverse i.e.
A+ = A−1.

In an analogous way we define the generalized inverse
A(s)+ ∈ R(s)m×p of the polynomial matrix A(s) ∈
R[s]p×m defined in (7) as the matrix which satisfies the
properties (i)-(iv) of Definition 1. [8] proposed the fol-
lowing Theorem for the computation of the generalized
inverse of a polynomial matrix (7).

Theorem 2 [8] Let A(s) ∈ R[s]p×m as in (7) and

a(s, z) = det
[
zIp −A(s)A(s)T

]

= a0(s)zp + a1(s)zp−1 + · · ·+ ap−1(s)z + ap(s)
(8)

where
a0(s) = 1

be the characteristic polynomial of A(s)A(s)T . Let
ap(s) ≡ 0, ..., ak+1(s) ≡ 0 while ak(s) 6= 0 and Λ :=
{si ∈ R : ak(si) = 0}. Then the generalized inverse
A(s)+ of A(s) for s ∈ R− Λ is given by

A(s)+ = − 1
ak(s)

A(s)T Bk−1(s) (9)

Bk−1(s) = a0(s)
(
A(s)A(s)T

)k−1
+ · · ·+ ak−1(s)Ip

If k = 0 is the largest integer such that ak(s) 6= 0, then
A(s)+ = 0. For those si ∈ Λ find the largest integer
ki < k such that aki(si) 6= 0 and then the generalized
inverse A(si)+ of A(si) is given by

A(si)+ = − 1
aki(si)

A(si)T Bki−1(si)

Bki−1(si) = a0(s)
(
A(si)A(si)T

)k−1
+ · · ·+ aki−1(si)Ip

Although the above algorithm is good enough for a
symbolic programming language, it is not the appro-
priate for a high level programming language. There-
fore in the sequel we propose a 4 step algorithm for the
computation of the generalized inverse of A(s) through
DFT transforms.

Algorithm 3 (Evaluation of the generalized inverse of
A(s))

Step 1. (Evaluation of the polynomial a(s, z))

It is easily seen from (8), that the greatest power n1 of
s in a(s, z) is equal to the greatest power among the
powers of ai(s), i = 1, 2, .., p. Note however, [8] that the
greatest power of ak(s) is 2kq i.e. n1 = max{2kq, k =
1, 2, ..., p} = 2pq. The greatest power n2 of z in a(s, z)
is p i.e. n2 = p. Thus the polynomial a(s, z) can be
written as

a(s, z) =
n1∑

l1=0

n2∑

l2=0

al1,l2s
l1zl2 (10)

The polynomial a(s, z) can be numerically computed
using the following R = (2pq + 1)× (p + 1) points

ui(rj) = W
−rj

i , i = 1, 2 (11)
i = 1, 2 and rj = 0, 1, ...,Mi
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where

Wi = e
2πj

Mi+1

i = 1, 2 ; M1 = 2pq ; M2 = p

To evaluate the coefficients ar1,r2 define

ãr1,r2 = det[u2(r2)Ip −A(u1(r1))A(u1(r1))T ] (12)

From equations (10), (11) and (12) it follows that

ãr1,r2 =
n1∑

l1=0

n2∑

l2=0

al1,l2W
−r1l1
1 W−r2l2

2 (13)

Using equations (13) and (5) it is obvious that [ãr1,r2 ]
and [al1,l2 ] form a DFT pair. Therefore the coefficients
[al1,l2 ] can be computed using the inverse 2-D DFT as
follows

al1,l2 =
1
R

n1∑
r1=0

n2∑
r2=0

ãr1,r2W
r1l1
1 W r2l2

2

where l1 = 0, 1, ..., 2pq and l2 = 0, 1, .., p.

Step 2. (Evaluate ak(s))

Find k : ak+1(s) = ak+2(s) = · · · = ap(s) = 0 and
ak(s) 6= 0 or al1,0 = al1,1 = · · · = al1,k+1 = 0 ∀l1 and
al1,k 6= 0 for some k.

Step 3. (Evaluate A(s)T Bk−1(s))

It is easily seen that the greatest power n of s in

B(s) = A(s)T Bk−1(s) =

A(s)T
[(

A(s)A(s)T
)k−1

+ · · ·+ ak−1(s)Ip

]

is n = max{2(k − 1)q + q, k = 1, 2, ..., p} = (2p − 1)q.
Thus the polynomial matrix B(s) can be written as

B(s) =
n∑

l=0

Bls
l (14)

The polynomial B(s) can be numerically computed us-
ing the following R = (2p− 1)q + 1 points

u(r) = W−r (15)

where
W = e

2πj
(2p−1)q+1

To evaluate the coefficients Bl define

B̃r = B(u(r)) (16)

From equations (14), (15) and (16) it follows that

B̃r =
n∑

l=0

BlW
−lr (17)

Using equations (17) and (2) it is obvious that [B̃i] and
[Bl] form a DFT pair. Therefore the coefficients [Bl]
can be computed using the inverse DFT as follows

Bl =
1
R

n∑
r=0

B̃rW
lr

where l = 0, 1, ..., (2p− 1)q.

Step 4. (Evaluation of the generalized inverse)

A(s)+ =
B(s)
−ak(s)

4 Drazin inverse of a polynomial matrix

Using the same approach with the previous section, we
define the Drazin inverse of a polynomial matrix and
find a DFT algorithm for its computation.

Definition 4 For every matrix A ∈ Rm×m, a unique
matrix AD ∈ Rm×m, which is called Drazin inverse,
exists satisfying

(i) Ak+1AD = Ak for k = ind(A) = min(k ∈ N :
rank

(
Ak

)
= rank

(
Ak+1

)
)

(ii) ADAAD = AD

(iii) AAD = ADA

In the special case that the matrix A is square non-
singular matrix, the Drazin inverse of A is simply its
inverse i.e. AD = A−1.

In an analogous way we define the Drazin inverse
A(s)D ∈ R(s)m×m of the polynomial matrix A(s) ∈
R[s]m×m defined in (7) (with p = m) as the matrix
which satisfies the properties (i)-(iii) of Definition 4.
[12] proposed the following algorithm for the computa-
tion of the Drazin inverse of a polynomial matrix (7).

Theorem 5 [12] Consider a nonregular one-variable
rational matrix A(s). Assume that

a(z, s) = det [zIm −A(s)] =

= a0(s)zm + a1(s)zm−1 + · · · am−1(s)z + am(s),
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where
a0(s) ≡ 1, z∈C

is the characteristic polynomial of A(s). Also, consider
the following sequence of m×m polynomial matrices

Bj(s) = a0(s)A(s)j + · · · aj−1(s)A(s) + aj(s)Im,

a0(s) = 1, j = 0, . . . , m

Let

am(s) ≡ 0, . . . , at+1(s) ≡ 0, at(s) 6= 0.

Define the following set:

Λ = {si ∈ C: at(si) = 0}
Also, assume

Bm(s) = · · · = Br(s) = 0, Br−1(s) 6= 0

and k = r − t. In the case s ∈ C\Λ and k > 0, the
Drazin inverse of A(s) is given by

A(s)D = (−1)k+1at(s)−k−1A(s)kBt−1(s)k+1

Bt−1(s) = a0(s)A(s)t−1 + · · ·+ at−1(s)A(s)0

In the case s ∈ C\Λ and k = 0, we get A(s)D = O.

For si ∈ Λ denote by ti the largest integer satisfying
ati(si) 6= 0, and by ri the smallest integer satisfying
Bri(si) ≡ O. Then the Drazin inverse of A(si) is equal
to

A(si)D = (−1)ki+1ati(si)−ki−1A(si)kiBti−1(si)ki+1

Bti−1(si) =a0(si)A(si)ti−1 + · · ·+ ati−1(si)A(si)0

where ki = ri − ti.

It is known that a q-th order polynomial is zero iff
its value at q + 1 points is zero. The same holds for
polynomial matrices as we can easily in the following
Lemma.

Lemma 6 A polynomial matrix

B(s) = B0 + B1s + · · ·+ Bqs
q ∈ R[s]m×m

is the zero polynomial matrix iff its value at q + 1 dis-
tinct points is the zero matrix.

Proof: Consider that the value of the matrix B(s)
at the q + 1 distinct points si, i = 0, 1, ..., q + 1 is zero.
Then we shall have that

[
B(s0) B(s1) · · · B(sq)

]
=

=
[

B0 B1 · · · Bq

]



Im Im · · · Im

s0Im s1Im · · · sqIm

...
...

. . .
...

sq
0Im sq

1Im · · · sq
qIm




︸ ︷︷ ︸
R

= 0[m]×[(q+1)m]

However since the q +1 points are distinct the Vander-
mode matrix R has nonzero determinant and therefore
the above system of equations has the unique solution
Bi = 0, i = 0, 1, ..., q.

In what follows, we propose a 6-step algorithm for the
evaluation of the Drazin inverse of a polynomial matrix
A(s).

Algorithm 7 (Evaluation of the Drazin inverse of a
polynomial matrix A(s))

Step 1. (Evaluation of the polynomial a(s, z))

It is easily seen that the greatest power n1 of s in a(s, z)
is equal to the greatest power among the powers of
ai(s), i = 1, 2, .., m. Note [9] that the greatest power of
ak(s) is 2kq i.e. n1 = max{2kq, k = 1, 2, ..., m} = 2mq.
The greatest power n2 of z in a(s, z) is m i.e. n2 = m.
Thus the polynomial a(s, z) can be written as

a(s, z) =
n1∑

l1=0

n2∑

l2=0

al1,l2s
l1zl2 (18)

The polynomial a(s, z) can be numerically computed
using the following R = (2mq + 1)× (m + 1) points

ui(ri) = W−ri
i , i = 1, 2 (19)

where

Wi = e
2πj

Mi+1

i = 1, 2 ; M1 = 2mq ; M2 = m

To evaluate the coefficients al1,l2 define

ãr1,r2 = det[u2(r2)Im −A(u1(r1))] (20)

From equations (18), (19) and (20) it follows that

ãr1,r2 =
n1∑

l1=0

n2∑

l2=0

al1,l2W
−r1l1
1 W−r2l2

2 (21)

Using equations (21) and (5) it is obvious that [ãr1,r2 ]
and [al1,l2 ] form a DFT pair. Therefore the coefficients
[al1,l2 ] can be computed using the inverse 2-D DFT as
follows

al1,l2 =
1
R

n1∑
r1=0

n2∑
r2=0

ãr1,r2W
r1l1
1 W r2l2

2

where l1 = 0, 1, ..., 2mq and l2 = 0, 1, .., m.

Step 2. (Evaluate at(s))

Find t : at+1(s) = at+2(s) = · · · = am(s) = 0 and
at(s) 6= 0 or ar1,0 = ar1,1 = · · · = ar1,t+1 = 0 ∀r1 and
ar1,t 6= 0 for some t.
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Step 3. (Evaluate r ≥ t : Bm(s) ≡ 0,...,Br(s) ≡
0, Br−1(s) 6= 0)

Now using lemma 6, we can easily find an algorithm
for the determination of r. More specifically consider
the polynomial matrix

Bj(s) = A(s)j+a1(s)A(s)j−1+· · · aj−1(s)A(s)+aj(s)Im

The greatest power n of s in Bj(s) is nj = 2jq. In
order now to determine the value of r ≥ t which satisfy
the property : Bm(s) ≡ 0,...,Br(s) ≡ 0, Br−1(s) 6= 0
we use the following short algorithm :

j = m

Determine the value of Bj(s) at the following nj + 1
points (or any other nj + 1 distinct points)

u(r) = W−r,W = e
2πj

nj+1

Do WHILE (Bj(s) = 0 ∀u(r))

j = j − 1

Determine the value of Bj(s) at the following nj + 1
points

u(r) = W−r,W = e
2πj

nj+1

END DO

r = j

The scepticism of the above short algorithm is that the
polynomial matrix Bj(s) of degree nj coincides with
the zero matrix if its value at nj + 1 points is equal to
zero (Lemma 6).

Step 4. (Evaluation of A(s)kBt−1(s)k+1)

Let k = r − t. Then the greatest power n of s in

B(s) = A(s)kBt−1(s)k+1

Bt−1(s) = a0(s)A(s)t−1 +· · ·+ at−1(s)A(s)0

is n = 2(t−1)q(k+1)+qk. Thus the polynomial matrix
B(s) can be written as

B(s) =
n∑

l=0

Bls
l (22)

The polynomial matrix B(s) can be numerically com-
puted using the following R = n + 1 points

u(r) = W−r (23)

where
W = e

2πj
n+1

To evaluate the coefficients Bl define

B̃r = B(u(r)) (24)

From equations (22), (23) and (24) it follows that

B̃r =
n∑

l=0

BlW
−lr (25)

Using equations (25) and (2) it is obvious that [B̃i] and
[Bl] form a DFT pair. Therefore the coefficients [Bl]
can be computed using the inverse DFT as follows

Bl =
1
R

n∑
r=0

B̃lW
lr

where l = 0, 1, ..., n.

Step 5. (Evaluation of at(s)k+1)

The greatest power n of s in

a(s) = at(s)k+1

is n = 2tq(k + 1). Thus the polynomial a(s) can be
written as

a(s) =
n∑

l=0

als
l (26)

The polynomial a(s) can be numerically computed us-
ing the following R = n + 1 points

u(r) = W−r (27)

where
W = e

2πj
n+1

To evaluate the coefficients al define

ãr = a(u(r)) (28)

From equations (26), (27) and (28) it follows that

ãr =
n∑

l=0

alW
−lr (29)

Using equations (29) and (2) it is obvious that [ãl] and
[al] form a DFT pair. Therefore the coefficients [al] can
be computed using the inverse DFT as follows

al =
1
R

n∑
r=0

ãrW
lr

where l = 0, 1, ..., n.

Step 6. (Evaluation of the Drazin inverse)

A(s)D =
B(s)
a(s)
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5 Implementation

In this section we will briefly describe the implemen-
tation of algorithm 3 and algorithm 7 in Mathemat-
ica. Note that the Mathematica code is available by
contacting one of the authors. The Mathematica func-
tions are GeneralizedInverse[A] and DrazinInverse[A]
where A is a polynomial matrix with indeterminate s.
A screenshot from a Mathematica notebook can be seen
in the following figure.

In[20]:= A= 881,s,0<, 80,1,s<<

Out[20]= J1 s 0
0 1 s

N
In[21]:= GeneralizedInverse@AD

Out[21]=

i

k

s2+1
s4+s2+1

-
s

s4+s2+1

s3

s4+s2+1
1

s4+s2+1

-
s2

s4+s2+1
s3+s

s4+s2+1

y

{
The efficiency of the algorithms have been evaluated us-
ing the Mathematica function ”Timing” which returns
the CPU time consumed in seconds. Additionally, our
implementation of Generalized (Drazin) inverse is com-
pared with the implementation of [12] ([8]). For the test
we used random matrices up to dimension 5 and degree
5. For both inverses the results were almost identical.
Due to lack of space we present the comparison between
the generalized inverse algorithms. The following graph
shows the dependence of the CPU time consumed for
the computation of the generalized inverse, versus the
number of rows and the degree of the involved polyno-
mial matrix. The red surface is the DFT based algo-
rithm and the green one is the implementation of [8].

Diagram 1. Graph of the CPU time=F(rows,degree)
in both algorithms DFTGI and [8].

It can be seen that for small values of the degree and the
size of the polynomial matrix, the algorithm presented
on [8] is better, while for bigger values of the degree and
the size the DFT based algorithm gives better results.
All the tests run on a COMPAQ Presario with CPU a
Pentium III at 700MHz and 128Mb of memory, using
Windows 2000 Professional and Mathematica 4.1.

6 Conclusions

In this paper we have presented two new algorithms for
the computation of the generalized inverse and Drazin

inverse of a polynomial matrix. The proposed algo-
rithms have been tested and were shown to be more
efficient from the known ones of [8] and [12] in the case
where the degree and the size of the polynomial matrix
gets bigger. The proposed algorithms can be extended
to multivariable polynomial matrices. The clear ben-
efit of computing such a generalized (Drazin) inverse
is that it enables a wider set of such problems to be
solved [7].
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