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Abstract�The aim of this work is twofold : a) it uses the
fundamental matrix of the resolvent of a regular pencil in order
to provide an algorithm for the computation of the fundamental
matrix of the resolvent of a polynomial matrix, and b) it proposes
a closed formula for the forward, backward and symmetric
solution of an AutoRegressive Moving Average (ARMA). This
closed formula is represented in terms of the fundamental matrix
of the resolvent of one of the polynomial matrices that describes
the ARMA representation.

I. INTRODUCTION

Let C be the set of complex numbers and Cm�n the set
of m � n matrices with elements in C. If E;A 2 Cn�n and
zE � A is invertible for some z 2 C, then for some R > 0
and jzj > R, we have the Laurent expansion at in�nity of

(zE �A)�1 = ���z��1 + � � �+��1z0+

+�0z
�1 + � � �+�kz�k�1 + � � � = z�1

1X
i=��

�iz
�i

where the coef�cient matrices �i 2 Cn�n are indepen-
dent of z and are uniquely determined by E;A. �i; i =
��;��+1; :: are known as the (forward) fundamental matrix
sequence [4]. When E = In, the identity matrix, (zIn �A)�1,
which always exists is often called the resolvent of A; thus
(zE �A)�1 was considered by [6] as a generalized resolvent.
In [3] it is shown how to compute �i given �0 and ��1 and in
[6] it is shown how to compute �i from E;A using the Drazin
inverse (where the Drazin inverse can be computed recursively
as described in [9]). A number of important properties of
the fundamental matrix sequence have been given in [3], [5].
The fundamental matrix sequence �i plays a key role in the
analysis of discrete singular systems, since the solution of
discrete singular systems (forward, backward and symmetric)
as well as many of the properties of these systems such as
reachability, observability etc. can be described through the
fundamental matrix sequence as has been shown in [1], [4]
and [5].
Our �rst goal in this work is to show how to compute the

generalized resolvent of a regular polynomial matrix A (z) =
A0 + A1z + � � � + Aqz

q; Ai 2 Rn�n or otherwise how
to compute the fundamental matrix sequence of the inverse

of a regular polynomial matrix and thus extend the results
presented by [3] and [6]. In order to accomplish this task
we propose a matrix pencil (zE �A) where the matrices
E;A are determined in terms of the coef�cient matrices Ai
of the regular polynomial matrix A (z) and then connect
the fundamental matrix sequences of the regular polynomial
matrix A (z) and the ones of the matrix pencil (zE �A). Our
second goal is to propose an application of the fundamental
matrix of a regular polynomial matrix to the solution of a
discrete time AutoRegressive (ARMA) representation. More
speci�cally we propose closed formulae for the forward solu-
tion (the solution in terms of the input sequence and the initial
conditions), backward solution (the solution in terms of the
�nal conditions and the input sequence) and the symmetric
solution (the solution in terms of the boundary conditions
(initial-�nal) conditions and the input sequence) of a discrete
time ARMA representation. The whole theory is illustrated via
examples.

II. FUNDAMENTAL MATRIX AND SOLUTIONS OF SINGULAR
SYSTEMS

Consider the singular dynamical system of equations

Exk+1 = Axk +Buk k = 0; 1; :::; N � 1 (1)

with xk 2 Rn; uk 2 Rm. The interval of interest of index k is
[0; N ], with uk nonzero for k = 0; 1; ::; N . By assuming that
the pencil zE�A is regular i.e. det (z0E �A) 6= 0 for some
z0 2 C, then for some R > 0 and jzj > R, the Laurent series
expansion about in�nity for the resolvent matrix is given by

(zE �A)�1 = ���z��1 + � � �+��1z0 +�0z�1+ (2)

+ � � �+�kz�k�1 + � � � = z�1
1X

i=��
�iz

�i

where � is the index of nilpotence and the sequence �i is
known as the (forward) fundamental matrix. Similarly for
some R > 0 and for 0 < jzj < R, the Laurent series expansion



about zero for the resolvent matrix is given by

(zE �A)�1 = Vpz�p + � � �+ V1z�1+ (3)

+V0z
0 + � � �+ V�kzk + � � � =

1X
i=�p

V�iz
i

where the sequence V�i is known as the (backward) funda-
mental matrix. The following properties of the fundamental
matrix are well known [3] :
Theorem 1: With (zE �A) regular and �i de�ned by (2)

:
1. �iE � �i�1A = I�i
2. E�i �A�i�1 = I�i

3. �i =
�

(�0A)
i
�0 i � 0

(���1E)�i�1 ��1 i < 0

�
4. �iE�j = �jE�i

5. �iE�j =

8<: ��i+j i < 0; j < 0
�i+j i � 0; j � 0
0 otherwise

9=;
6. �iA�j =

8<: ��i+j+1 i < 0; j < 0
�i+j+1 i � 0; j � 0
0 otherwise

9=;
where �i is the Kronecker delta.
Explicit formulas for the coef�cients �i has been given in

[1], [2], [4] and [6]. There have been several interpretations
of the equation (1). >From a dynamical standpoint we may
consider that the initial condition x0 is given and that is desired
to determine the state xk in a forward fashion from the input
sequence and the previous values of the semistate. We call this
the forward solution of (1) and is given by [5] :

xk = �kEx0 +
Xk+��1

i=0
�k�i�1Bui (4)

A variant of this is to consider xN as given and then determine
xk in a backward fashion from the input and future values of
the semistate. We call this the backward solution of (1) and
is given by [5] :

xk = �Vk�N�1ExN +
XN�1

i=k�p
Vk�iBui (5)

Another interpretation, arising in economics (where k might
not be the time variable) and elsewhere, is to determine the
semistate xk for intermediate values of k, given the sequence
fukg and admissible x0 and xN . We call this the symmetric
solution of (1) and is given by [5] :

xk = �kEx0 � ��N+kExN +
XN�1

i=0
�k�i�1Bui (6)

k = 1; 2; :::; N � 1

In the next section, using the properties of the fundamental ma-
trix described above, we propose an algorithm for determining
the fundamental matrix of the inverse of a regular polynomial
matrix.

III. FUNDAMENTAL MATRIX OF THE RESOLVENT OF A
POLYNOMIAL MATRIX

Consider the polynomial matrix

A(z) = A0 +A1z + : : :+Aqz
q 2 R[z]r�r

By assuming that A (z) is regular i.e. detA (z) 6= 0, the
Laurent series expansion about in�nity for the resolvent matrix
of A (z) is de�ned by :

A(z)�1 = Hq̂rz
q̂r +Hq̂r�1z

q̂r�1 + : : : =
1X

i=�q̂r

Hiz
�i

while the the Laurent series expansion about zero for the
resolvent matrix of A (z) is de�ned by :

A(z)�1 = N�z
�� + � � �+N1z�1+

+N0z
0 + � � �+N�kzk + � � � =

1X
i=��

N�iz
i

We introduce the following notation

H l;m
k =

26664
Hk Hk�1 � � � Hk�m+1
Hk+1 Hk � � � Hk�m+2
...

...
. . .

...
Hk+l�1 Hk+l�2 � � � Hk+l�m

37775 2 Rlr�mr
where the subscript on H l;m

k indicates the subscript of the
(1; 1) block-element of the matrix, whereas the superscript
indicates its block dimensions. Denote also by

~E =

26664
Aq Aq�1 � � � A1
0 Aq � � � A2
...

...
. . .

...
0 � � � 0 Aq

37775 2 Rqr�qr (7)

~A =

26664
A0 0 � � � 0
A1 A0 � � � 0
...

...
. . .

...
Aq�1 Aq�2 � � � A0

37775 2 Rqr�qr
In the following we will denote by �i the coef�cients of the
Laurent series expansion about in�nity of the inverse of the
resolvent

�
z ~E + ~A

��1
de�ned by:�

z ~E + ~A
��1

= ���z
��1 + � � �+��1z0+ (8)

+�0z
�1 + � � �+�kz�k�1 + � � � = z�1

1X
i=��

�iz
�i

and by Vi the coef�cients of the Laurent series expansion about
zero, i.e. �

z ~E + ~A
��1

= Vpz
�p + � � �+ V1z�1+

+V0z
0 + � � �+ V�kzk + � � � =

1X
i=�p

V�iz
i



The next Theorem connects the coef�cients of the Laurent
expansion of A(z)�1 and those of

�
z ~E + ~A

��1
.

Theorem 2: The coef�cients Hi (Ni) of the Laurent series
expansion at in�nity (zero) of A(z)�1 and those �i (Vi) of�
z ~E + ~A

��1
are connected by:

�i = H
q;q
�q�qi =

26664
H�q�qi H�q�qi�1 � � � H�2q�qi+1
H�q�qi+1 H�q�qi � � � H�2q�qi+2

...
...

. . .
...

H�qi�1 H�qi�2 � � � H�qi�q

37775

Vi = N
q;q
�qi =

26664
N�qi N�qi�1 � � � N�qi�q+1
N�qi+1 N�qi � � � N�qi�q+2
...

...
. . .

...
N�qi+q�1 N�qi+q�2 � � � N�qi

37775
Proof: Since Hi are coef�cients of the Laurent series

expansion of A(z)�1 we have that

A (z)A (z)
�1
= Ir ,

(A0 +A1z + : : :+Aqz
q)

0@ 1X
i=�q̂r

Hiz
�i

1A = Ir ,

qX
i=0

AiHi�k = �kIr

 
or

qX
i=0

Hi�kAi = �kIr

!
(9)

Similarly we have that

A (z)A (z)
�1
= Ir ,

(A0 +A1z + : : :+Aqz
q)

 1X
i=��

N�iz
i

!
= Ir ,

qX
i=0

AiNk�i = �kIr

 
or

qX
i=0

Nk�iAi = �kIr

!
(10)

Now, we can easily check that

�
z ~E + ~A

�0@z�1 1X
i=��

�iz
�i

1A = Iqr

or equivalently

~E�i + ~A�i�1 =

=

26664
Aq Aq�1 � � � A1
0 Aq � � � A2
...

...
. . .

...
0 � � � 0 Aq

37775�

�

26664
H�q�qi H�q�qi�1 � � � H�2q�qi+1
H�q�qi+1 H�q�qi � � � H�2q�qi+2

...
...

. . .
...

H�qi�1 H�qi�2 � � � H�qi�q

37775+

+

26664
A0 0 � � � 0
A1 A0 � � � 0
...

...
. . .

...
Aq�1 Aq�2 � � � A0

37775

�

26664
H�qi H�qi�1 � � � H�q�qi+1
H�qi+1 H�qi � � � H�q�qi+2
...

...
. . .

...
H�qi+q�1 H�qi+q�2 � � � H�qi

37775 (9)
=

= Iqr�i

Note that we have replaced the matrices E;A in (2) with
~E;� ~A in (8). Similarly we can check that

�
z ~E + ~A

�0@ 1X
i=�p

V�iz
i

1A = Iqr

or equivalently

~EVi+1 + ~AVi =

=

26664
Aq Aq�1 � � � A1
0 Aq � � � A2
...

...
. . .

...
0 � � � 0 Aq

37775�

�

26664
N�qi�q N�qi�q�1 � � � N�qi�2q+1
N�qi�q+1 N�qi�q � � � N�qi�2q+2

...
...

. . .
...

N�qi�1 N�qi�2 � � � N�qi�q

37775+

+

26664
A0 0 � � � 0
A1 A0 � � � 0
...

...
. . .

...
Aq�1 Aq�2 � � � A0

37775�

�

26664
N�qi N�qi�1 � � � N�qi�q+1
N�qi+1 N�qi � � � N�qi�q+2
...

...
. . .

...
N�qi+q�1 N�qi+q�2 � � � N�qi

37775 (10)
=

= Iqr�i

Following the same reasoning, we can prove the second
relation that concerns the coef�cients of the Laurent expansion
about zero of A(z)�1 and

�
z ~E + ~A

��1
.

Based in the above Theorem it is now easy to compute
the coef�cients of the Laurent series expansion at in�nity of
A(z)�1 by using the following algorithm.
Algorithm 1: Computation of the Laurent series expansion

at in�nity (zero) of A(z)�1.
Step 1. Construct the matrices ~E; ~A de�ned in (7).
Step 2. Determine the matrices �0;��1 (V1; V0) of the

resolvent
�
z ~E + ~A

��1
by using one of the known computing

techniques described in [1], [2], [4] and [6]. Compute the
coef�cients H�2q+1; : : : ;Hq�1 (N�2q+1; : : : ; Nq�1) from the



following relations

�0 =

26664
H�q H�q�1 � � � H�2q+1
H�q+1 H�q � � � H�2q+2
...

...
. . .

...
H�1 H�2 � � � H�q

37775

��1 =

26664
H0 H�1 � � � H�q+1
H1 H0 � � � H�q+2
...

...
. . .

...
Hq�1 Hq�2 � � � H0

37775

V1 =

26664
N�q N�q�1 � � � N�2q+1
N�q+1 N�q � � � N�2q+2
...

...
. . .

...
N�1 N�2 � � � N�q

37775

V0 =

26664
N0 N�1 � � � N�q+1
N1 N0 � � � N�q+2
...

...
. . .

...
Nq�1 Nq�2 � � � N0

37775

Step 3. The rest terms can be determined by using the
property (3) of Theorem 1

�i =

8><>:
�
��0 ~A

�i
�0 i � 0�

���1 ~E
��i�1

��1 i < 0

9>=>; =

=

26664
H�q�qi H�q�qi�1 � � � H�2q�qi+1
H�q�qi+1 H�q�qi � � � H�2q�qi+2

...
...

. . .
...

H�qi�1 H�qi�2 � � � H�qi�q

37775
Since �i are the coef�cients of the Laurent expansion at

in�nity of
�
z ~E + ~A

��1
, corresponding properties to the ones

de�ned in Theorem 1 can now be established for polynomial
matrices.
Theorem 3: With A (z) regular and �i de�ned by (8) :
1. �i ~E +�i�1 ~A = I�i
2. ~E�i + ~A�i�1 = I�i

3. �i =

8><>:
�
��0 ~A

�i
�0 i � 0�

���1 ~E
��i�1

��1 i < 0

9>=>;
4. �i ~E�j = �j ~E�i

5. �i ~E�j =

8<: ��i+j i < 0; j < 0
�i+j i � 0; j � 0
0 otherwise

9=;
6. �i ~A�j =

8<: ��i+j+1 i < 0; j < 0
�i+j+1 i � 0; j � 0
0 otherwise

9=;
Example 1: Consider the inversion of the polynomial ma-

trix

A (z) =

�
z + 1 z � 1
1 z2

�
=

=

�
1 �1
1 0

�
| {z }

A0

+

�
1 1
0 0

�
| {z }

A1

z +

�
0 0
0 1

�
| {z }

A2

z2

Step 1. Construct the matrices ~E; ~A de�ned in (7).

~E =

�
A2 A1
0 A2

�
=

2664
0 0 1 1
0 1 0 0
0 0 0 0
0 0 0 1

3775
~A =

�
A0 0
A1 A0

�
=

2664
1 �1 0 0
1 0 0 0
1 1 1 �1
0 0 1 0

3775
Step 2. Determine the matrices �0;��1 of the resolvent�
z ~E + ~A

��1
using the algorithm presented in [6]. Find c such

that det
�
c ~E + ~A

�
6= 0 i.e. c = 1

det
h
1� ~E + ~A

i
= 4

Then form the matrices

Ê =
�
c ~E + ~A

��1
~E =

2664
1 � 1

2 � 1
2 0

0 1
2

1
2 0

0 1
2 1 � 1

2
0 � 1

2 0 1
2

3775
Then determine

�0 =

�
H�2 H�3
H�1 H�2

�
= ÊD

�
c ~E + ~A

��1
=

=

2664
�1 �1 2 2
0 1 �1 0
1 0 �1 �1
0 0 0 1

3775
��1 =

�
H0 H�1
H1 H0

�
= �ÂD

�
I � ÊÊD

��
c ~E + ~A

��1
=

=

2664
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

3775
where ~ED denotes the Drazin inverse of ~E. Therefore

H�3 =

�
2 2
�1 0

�
; H�2 =

�
�1 �1
0 1

�
H�1 =

�
1 0
0 0

�
; H0 =

�
0 0
0 0

�
; H1 =

�
1 0
0 0

�
Step 3. The rest terms can be determined by using the property



(3) of Theorem 1

�i =

8><>:
�
��0 ~A

�i
�0 � 04;4 i � 0�

���1 ~E
��i�1

��1 i < 0

9>=>; =

=

26664
H�q�qi H�q�qi�1 � � � H�2q�qi+1
H�q�qi+1 H�q�qi � � � H�2q�qi+2

...
...

. . .
...

H�qi�1 H�qi�2 � � � H�qi�q

37775
IV. APPLICATIONS TO DIFFERENCE EQUATIONS

Consider a linear, time invariant discrete time system,
described by the difference equation:

A0yk +A1yk+1 + � � �+Aqyk+q = B0uk + � � �+Bquk+q
k = 0; 1; :::; N � q

or otherwise
A (�) yk = B (�)uk (11)

where � denotes the shift-forward operator, yk : [0; N ]! Rr
is the output of the system, uk : [0; N ] ! Rm is a known
input of the system, and

A (�) = A0 +A1� + � � �+Aq�q 2 R [�]r�r

B (�) = B0 +B1� + � � �+Bq�q 2 R [�]r�m

The above description is also known as the AutoRegressive
Moving Average (ARMA) representation of our system. We
may rewrite the above equations for k = 0; 1; ::; q � 1 as
follows

~Exk+1 + ~Axk = ~Bvk k = 0; 1; :::;

�
N

q

�
� 1 (12)

where

~E =

26664
Aq Aq�1 � � � A1
0 Aq � � � A2
...

...
. . .

...
0 � � � 0 Aq

37775 2 Rqr�qr

~A =

26664
A0 0 � � � 0
A1 A0 � � � 0
...

...
. . .

...
Aq�1 Aq�2 � � � A0

37775 2 Rqr�qr

~B =

266664
Bq � � � B0 0 � � � 0

0 Bq � � � B0
. . . 0

...
. . . . . . . . . . . .

...
0 � � � Bq Bq�1 � � � B0

377775 2 Rqr�2qr

xk =

26664
ykq+q�1
ykq+q�2

...
ykq+0

37775 and vk =

26664
ukq+2q�1
ukq+2q�2

...
ukq+0

37775
and [N=q] denotes the integer part of the rational number N=q.
Since N is usually not a multiple of the number q, we can

always extend our interval [0; N ] to [0; N̂ ] where N̂ = nq,
by adding new states or subtracting some of the last states of
the system, always based on the initial-�nal conditions of the
system and the solution of the system that will describe in the
sequel. Therefore we assume in what follows, that N � N̂ =
nq.
Assume now that

�
z ~E + ~A

��1
= z�1

1X
i=��

�iz
�i

�
z ~E + ~A

��1
=

1X
i=�p

V�iz
i

A(z)�1 =

1X
i=�q̂r

Hiz
�i

A(z)�1 =
1X

i=��
N�iz

i

Using the forward solution form described in (4), we can prove
the following Theorem.
Theorem 4: The forward solution of (11) is the following:

yk =
�
H�k�q H�k�q+1 � � � H�k�1

�
�

�

26664
Aq 0 � � � 0
Aq�1 Aq � � � 0
...

...
. . .

...
A1 A2 � � � Aq

37775
26664

y0
y1
...

yq�1

37775+
+
�
H�k H�k+1 � � � Hq̂r

�
�

�

266664
B0 B1 � � � Bq 0 � � � 0

0 B0 B1 � � � Bq
. . . 0

...
. . . . . . . . . . . . . . .

...
0 � � � 0 B0 B1 � � � Bq

377775
26664

u0
u1
...

uk+q̂r+q

37775
(13)

Proof: Applying the form of the forward solution of
singular systems described in (4) to the system (12) we have
that26664

ykq+q�1
ykq+q�2

...
ykq+0

37775 = xk = �k ~Ex0 +Xk+��1

i=0
�k�i�1 ~Bvi

=

26664
H�q�qk H�q�qk�1 � � � H�2q�qk+1
H�q�qk+1 H�q�qk � � � H�2q�qk+2

...
...

. . .
...

H�qk�1 H�qk�2 � � � H�qk�q

37775�

�

26664
Aq Aq�1 � � � A1
0 Aq � � � A2
...

...
. . .

...
0 � � � 0 Aq

37775
26664
yq�1
yq�2
...
y0

37775+



+
Xk+��1

i=0

26664
H�qk+qi � � � H�qk+qi�q+1
H�qk+qi+1 � � � H�qk+qi�q+2

...
. . .

...
H�qk+qi+q�1 � � � H�qk+qi

37775�

�

266664
Bq � � � B0 0 � � � 0

0 Bq � � � B0
. . . 0

...
. . . . . . . . . . . .

...
0 � � � Bq Bq�1 � � � B0

377775
26664
uiq+2q�1
uiq+2q�2

...
uiq+0

37775
i

=

26664
H�2q�qk+1 � � � H�q�qk�1 H�q�qk
H�2q�qk+2 � � � H�q�qk H�q�qk+1

...
. . .

...
...

H�qk�q � � � H�qk�2 H�qk�1

37775�

�

26664
Aq 0 � � � 0
Aq�1 Aq � � � 0
...

...
. . .

...
A1 A2 � � � Aq

37775
26664

y0
y1
...

yq�1

37775+

+

26664
H�qk�q+1 � � � Hqq̂r�q Hqq̂r�q+1
H�qk�q+2 � � � Hqq̂r�q+1 Hqq̂r�q+2

...
. . .

...
...

H�qk � � � Hqq̂r�1 Hqq̂r

37775�

�

266664
B0 � � � Bq 0 � � � 0

0 B0 � � � Bq
. . . 0

...
. . . . . . . . . . . .

...
0 � � � B0 B1 � � � Bq

377775
26664

u0
...

u(k+q̂r+q)q�1
u(k+q̂r+q)q

37775
Taking the last of the above equations and replacing kq with
k we get the forward formula (13).
A necessary and suf�cient condition in order for the

ARMA-representation (11) to have a solution, is that relation
(13) is satis�ed for k = 0; 1; :::; q � 1 i.e.26664

y0
y1
...

yq�1

37775 =
26664

H�q H�q+1 � � � H�1
H�q�1 H�q � � � H�2
...

...
. . .

...
H�2q+1 H�2q+2 � � � H�q

37775�

�

26664
Aq 0 � � � 0
Aq�1 Aq � � � 0
...

...
. . .

...
A1 A2 � � � Aq

37775
26664

y0
y1
...

yq�1

37775+

+

26664
H0 � � � Hq̂r 0 � � � 0
H�1 � � � Hq̂r�1 Hq̂r � � � 0
...

. . .
...

...
. . .

...
H�q+1 � � � Hq̂r�q+1 Hq̂r�q+2 � � � Hq̂r

37775�

�

266664
B0 � � � Bq 0 � � � 0

0 B0 � � � Bq
. . . 0

...
. . . . . . . . . . . .

...
0 � � � B0 B1 � � � Bq

377775
26664

u0
u1
...

u2q�1+q̂r

37775
(14)

Using similar techniques and the backward solution form

described in (4), we get the backward solution formula for
the ARMA-representation (11).
Theorem 5: The backward solution of (11) is the following:

yk =
�
NN�k NN�k�1 � � � NN�k�q+1

�
�

�

26664
A0 0 � � � 0
A1 A0 � � � 0
...

...
. . .

...
Aq�1 Aq�2 � � � A0

37775
26664

yN
yN�1
...

yN�q+1

37775+
+
�
NN�k�q NN�k�q�1 � � � N�p

�
� (15)

�

266664
Bq � � � B0 0 � � � 0

0 Bq � � � B0
. . . 0

...
. . . . . . . . . . . .

...
0 � � � Bq Bq�1 � � � B0

377775
26664

uN
uN�1
...

uk�p

37775
Proof: Let �N =

h
N+1
q

i
� 1. We are interested for the

vectors xk where 0 < k < �N =
h
N+1
q

i
�1) �qk+N+1�

q > 0. Then using the relation (10) we obtain the following
relation that we shall use in the sequel

�

26664
N�qk+N+1 N�qk+N � � � N�qk+N�q+1
N�qk+N+2 N�qk+N+1 � � � N�qk+N�q+2

...
...

. . .
...

N�qk+N+q N�qk+N+q�1 � � � N�qk+N+1

37775�

�

26664
Aq Aq�1 � � � A1
0 Aq � � � A2
...

...
. . .

...
0 � � � 0 Aq

37775 (10)
=

=

26664
N�qk+N+1�q N�qk+N�q � � � N�qk+N�2q+1
N�qk+N+2�q N�qk+N+1�q � � � N�qk+N�2q+2

...
...

. . .
...

N�qk+N N�qk+N�1 � � � N�qk+N+1�q

37775�
(16)

�

26664
A0 0 � � � 0
A1 A0 � � � 0
...

...
. . .

...
Aq�1 Aq�2 � � � A0

37775
Applying the backward solution of singular systems described
in (5) to the system (12) we have that26664
ykq+q�1
ykq+q�2

...
ykq+0

37775 = xk = �Vk� �N�1 ~Ex �N +
X �N�1

i=k�p
Vk�i ~Bvi =

= �

266664
N�q(k� �N�1) � � � N�q(k� �N�1)�q+1
N�q(k� �N�1)+1 � � � N�q(k� �N�1)�q+2

...
. . .

...
N�q(k� �N�1)+q�1 � � � N�q(k� �N�1)

377775�



�

26664
Aq Aq�1 � � � A1
0 Aq � � � A2
...

...
. . .

...
0 � � � 0 Aq

37775
26664
y �Nq+q�1
y �Nq+q�2

...
y �Nq+0

37775+

+
X �N�1

i=k�p

26664
N�q(k�i) � � � N�q(k�i)�q+1
N�q(k�i)+1 � � � N�q(k�i)�q+2

...
. . .

...
N�q(k�i)+q�1 � � � N�q(k�i)

37775�

�

266664
Bq � � � B0 0 � � � 0

0 Bq � � � B0
. . . 0

...
. . . . . . . . . . . .

...
0 � � � Bq Bq�1 � � � B0

377775
26664
uiq+2q�1
uiq+2q�2

...
uiq+0

37775
�N=[N+1

q ]�1
= �

26664
N�qk+N+1 � � � N�qk+N�q+1
N�qk+N+2 � � � N�qk+N�q+2

...
. . .

...
N�qk+N+q � � � N�qk+N+1

37775�

�

26664
Aq Aq�1 � � � A1
0 Aq � � � A2
...

...
. . .

...
0 � � � 0 Aq

37775
26664

yN
yN�1
...

yN�q

37775+

+

26664
N�qk+N+1 � � � N�qp�q+1
N�qk+N+2 � � � N�qp�q+2

...
. . .

...
N�qk+N+q � � � N�qp

37775�

�

266664
Bq � � � B0 0 � � � 0

0 Bq � � � B0
. . . 0

...
. . . . . . . . . . . .

...
0 � � � Bq Bq�1 � � � B0

377775
26664

uN
uN�1
...

u(k�p)q

37775

(16)
=

26664
N�qk+N+1�q � � � N�qk+N�2q+1
N�qk+N+2�q � � � N�qk+N�2q+2

...
. . .

...
N�qk+N � � � N�qk+N+1�q

37775�

�

26664
A0 0 � � � 0
A1 A0 � � � 0
...

...
. . .

...
Aq�1 Aq�2 � � � A0

37775
26664

yN
yN�1
...

yN�q

37775+

+

26664
N�qk+N+1 � � � N�qp�q+1
N�qk+N+2 � � � N�qp�q+2

...
. . .

...
N�qk+N+q � � � N�qp

37775�

�

266664
Bq � � � B0 0 � � � 0

0 Bq � � � B0
. . . 0

...
. . . . . . . . . . . .

...
0 � � � Bq Bq�1 � � � B0

377775
26664

uN
uN�1
...

u(k�p)q

37775
By taking the last of the above equations and replacing kq

with k we get the backward formula (15).

A necessary and suf�cient condition in order for the
ARMA-representation (11) to have a solution, is that the
relation (15) is satis�ed k = 0; 1; :::; q � 1 i.e.

26664
yN
yN�1
...

yN�q+1

37775 =
26664

N0 N�1 � � � N�q+1
N1 N0 � � � N�q+2
...

...
. . .

...
Nq�1 Nq�2 � � � N0

37775�

�

26664
A0 0 � � � 0
A1 A0 � � � 0
...

...
. . .

...
Aq�1 Aq�2 � � � A0

37775
26664

yN
yN�1
...

yN�q+1

37775+

+

26664
N�q � � � N�p 0 � � � 0
N�q+1 � � � N�p+1 N�p � � � 0
...

. . .
...

...
. . .

...
N�1 � � � N�p+q�1 N�p+q�2 � � � N�p

37775�

�

266664
Bq � � � B0 0 � � � 0

0 Bq � � � B0
. . . 0

...
. . . . . . . . . . . .

...
0 � � � Bq Bq�1 � � � B0

377775
26664

uN
uN�1
...

uk�p

37775
(17)

Using the symmetric solution form described in (6), we get
the symmetric solution formula for the ARMA-representation
(11).

Theorem 6: The symmetric solution of (11) is the follow-
ing:

yk =
�
H�k�1 H�k�2 � � � H�k�q

�
�

�

26664
Aq Aq�1 � � � A1
0 Aq � � � A2
...

...
. . .

...
0 � � � 0 Aq

37775
26664
yq�1
yq�2
...
y0

37775+
+
�
HN�k HN�k�1 � � � HN�q�k+1

�
�

�

26664
A0 0 � � � 0
A1 A0 � � � 0
...

...
. . .

...
Aq�1 Aq�2 � � � A0

37775
26664

yN
yN�1
...

yN�q+1

37775+
+
�
H�q+N�k H�q+N�k�1 � � � H�k

�
� (18)

�

266664
Bq � � � B0 0 � � � 0

0 Bq � � � B0
. . . 0

...
. . . . . . . . . . . .

...
0 � � � Bq Bq�1 � � � B0

377775
26664

uN
uN�1
...
u0

37775



Proof: Let �N =
h
N+1
q

i
�1. Using relation (10) we have

�

26664
HN�2q�qk+1 � � � HN�3q�qk+2
HN�2q�qk+2 � � � HN�3q�qk+1

...
. . .

...
HN�q�qk � � � HN�2q�qk+1

37775� (19)

26664
Aq Aq�1 � � � A1
0 Aq � � � A2
...

...
. . .

...
0 � � � 0 Aq

37775 =

=

26664
HN�q�qk+1 � � � HN�2q�qk+2
HN�q�qk+2 � � � HN�2q�qk+1

...
. . .

...
HN�qk � � � HN�q�qk+1

37775�
26664

A0 0 � � � 0
A1 A0 � � � 0
...

...
. . .

...
Aq�1 Aq�2 � � � A0

37775
Applying the form of the symmetric solution of singular
systems described in (6) to the system (12) we have that26664

ykq+q�1
ykq+q�2

...
ykq+0

37775 = xk = �k ~Ex0 � �� �N+k
~Ex �N+

+
X �N�1

i=0
�k�i�1 ~Bvi

=

26664
H�q�qk � � � H�2q�qk+1
H�q�qk+1 � � � H�2q�qk+2

...
. . .

...
H�qk�1 � � � H�qk�q

37775�

�

26664
Aq Aq�1 � � � A1
0 Aq � � � A2
...

...
. . .

...
0 � � � 0 Aq

37775
26664
yq�1
yq�2
...
y0

37775�

�

26664
H�q+q �N�qk � � � Hq �N�qk�2q�1
H�q+q �N�qk+1 � � � Hq �N�qk�2q�2

...
. . .

...
Hq �N�qk�1 � � � Hq �N�qk�q

37775�

�

26664
Aq Aq�1 � � � A1
0 Aq � � � A2
...

...
. . .

...
0 � � � 0 Aq

37775
26664
y �Nq+q�1
y �Nq+q�2

...
y �Nq+0

37775+

+
X �N�1

i=0

26664
H�qk+qi � � � H�qk+qi�q+1
H�qk+qi+1 � � � H�qk+qi�q+2

...
. . .

...
H�qk+qi+q�1 � � � H�qk+qi

37775�

�

266664
Bq � � � B0 0 � � � 0

0 Bq � � � B0
. . . 0

...
. . . . . . . . . . . .

...
0 � � � Bq Bq�1 � � � B0

377775
26664
uiq+2q�1
uiq+2q�2

...
uiq+0

37775 =

�N=[N+1
q ]�1
=

26664
H�q�qk � � � H�2q�qk+1
H�q�qk+1 � � � H�2q�qk+2

...
. . .

...
H�qk�1 � � � H�qk�q

37775�

�

26664
Aq Aq�1 � � � A1
0 Aq � � � A2
...

...
. . .

...
0 � � � 0 Aq

37775
26664
yq�1
yq�2
...
y0

37775�

�

26664
HN�2q�qk+1 � � � HN�3q�qk+2
HN�2q�qk+2 � � � HN�3q�qk+1

...
. . .

...
HN�q�qk � � � HN�2q�qk+1

37775�

�

26664
Aq Aq�1 � � � A1
0 Aq � � � A2
...

...
. . .

...
0 � � � 0 Aq

37775
26664

yN
yN�1
...

yN�q+1

37775+

+

26664
H�2q+N�qk+1 H�2q+N�qk � � � H�qk�q+1
H�2q+N�qk+2 H�2q+N�qk+1 � � � H�qk�q+2

...
...

. . .
...

H�q+N�qk H�q+N�qk�1 � � � H�qk

37775�

�

266664
Bq � � � B0 0 � � � 0

0 Bq � � � B0
. . . 0

...
. . . . . . . . . . . .

...
0 � � � Bq Bq�1 � � � B0

377775
26664

uN
uN�1
...
u0

37775 =

(19)
=

26664
H�q�qk � � � H�2q�qk+1
H�q�qk+1 � � � H�2q�qk+2

...
. . .

...
H�qk�1 � � � H�qk�q

37775�

�

26664
Aq Aq�1 � � � A1
0 Aq � � � A2
...

...
. . .

...
0 � � � 0 Aq

37775
26664
yq�1
yq�2
...
y0

37775+

+

26664
HN�q�qk+1 � � � HN�2q�qk+2
HN�q�qk+2 � � � HN�2q�qk+1

...
. . .

...
HN�qk � � � HN�q�qk+1

37775�

�

26664
A0 0 � � � 0
A1 A0 � � � 0
...

...
. . .

...
Aq�1 Aq�2 � � � A0

37775
26664

yN
yN�1
...

yN�q+1

37775+



26664
H�2q+N�qk+1 � � � H�qk�q+1
H�2q+N�qk+2 � � � H�qk�q+2

...
. . .

...
H�q+N�qk � � � H�qk

37775�

�

266664
Bq � � � B0 0 � � � 0

0 Bq � � � B0
. . . 0

...
. . . . . . . . . . . .

...
0 � � � Bq Bq�1 � � � B0

377775
26664

uN
uN�1
...
u0

37775

Taking the last of the above equations and replacing kq with
k we get the symmetric formula (18).
A necessary and suf�cient condition in order for the

ARMA-representation (11) to have a solution is that the
relation (18) is satis�ed for k = 0; 1; :::; q � 1 and k =
N;N � 1; :::; N � q + 1 i.e.

26664
y0
y1
...

yq�1

37775 =
26664
H�1 H�2 � � � H�q
H�2 H�3 � � � H�q�1
...

...
. . .

...
H�q H�q�1 � � � H�2q

37775�

�

26664
Aq Aq�1 � � � A1
0 Aq � � � A2
...

...
. . .

...
0 � � � 0 Aq

37775
26664
yq�1
yq�2
...
y0

37775+

+

26664
HN HN�1 � � � HN�q+1
HN�1 HN�2 � � � HN�q
...

...
. . .

...
HN�q+1 HN�q � � � HN�2q+2

37775� (20)

�

26664
A0 0 � � � 0
A1 A0 � � � 0
...

...
. . .

...
Aq�1 Aq�2 � � � A0

37775
26664

yN
yN�1
...

yN�q+1

37775+

+

26664
HN�q � � � H0
HN�q�1 � � � H�1

...
. . .

...
HN�2q+1 � � � H�q+1

37775�

�

266664
Bq � � � B0 0 � � � 0

0 Bq � � � B0
. . . 0

...
. . . . . . . . . . . .

...
0 � � � Bq Bq�1 � � � B0

377775
26664

uN
uN�1
...
u0

37775

and

26664
yN
yN�1
...

yN�q+1

37775 =
26664

H�N�1 � � � H�N�q
H�N � � � H�N�q+1
...

. . .
...

H�N+q�2 � � � H�N�1

37775�

�

26664
Aq Aq�1 � � � A1
0 Aq � � � A2
...

...
. . .

...
0 � � � 0 Aq

37775
26664
yq�1
yq�2
...
y0

37775+

+

26664
H0 � � � H�q+1
H1 � � � H�q+2
...

. . .
...

Hq�1 � � � H0

37775�

�

26664
A0 0 � � � 0
A1 A0 � � � 0
...

...
. . .

...
Aq�1 Aq�2 � � � A0

37775
26664

yN
yN�1
...

yN�q+1

37775+ (21)

+

26664
H�q � � � H�N
H�q+1 � � � H�N+1
...

. . .
...

H�1 � � � H�N+q�1

37775�

�

266664
Bq � � � B0 0 � � � 0

0 Bq � � � B0
. . . 0

...
. . . . . . . . . . . .

...
0 � � � Bq Bq�1 � � � B0

377775
26664

uN
uN�1
...
u0

37775
Other formulae for the forward, backward and symmetric
solutions as well as the consistency of initial and/or �nal
conditions of discrete time ARMA-representations can be
found in [7]. An implementation of these formulae in the
Maple symbolic language can be found in [8]. It is easily
seen that the above results coincide with the ones presented
in [5] when the A (z) = zE � A or the known results from
the state space theory when A (z) = zIn �A.
Example 2: Consider the following discrete time ARMA

representation:�
z + 1 z � 1
1 z2

� �
y0
y1

�
=

�
1
0

�
uk (22)

Then from the �rst example we have that

�0 = Ê
D
�
c ~E + ~A

��1
= (23)

=

2664
�1 �1 2 2
0 1 �1 0
1 0 �1 �1
0 0 0 1

3775 = � H�2 H�3
H�1 H�2

�

and

��1 = �
�
I4 � ÊÊD

�
ÂD

�
c ~E + ~A

��1
= (24)

=

2664
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

3775 = � H0 H�1
H1 H0

�



Using property (3) of Theorem 3 we get that

�1 =

�
H�4 H�5
H�3 H�4

�
= ��0 ~A�0 = (25)

=

2664
�4 �3 7 6
1 1 �2 �2
2 2 �4 �3
�1 0 1 1

3775
Using (23, 24, 25) we conclude that

H�5 =

�
7 6
�2 �2

�
;H�4 =

�
�4 �3
1 1

�
H�3 =

�
2 2
�1 0

�
;H�2 =

�
�1 �1
0 1

�
;H�1 =

�
1 0
0 0

�
The forward solution of the ARMA system is given by (13)
and so

y2 =
�
H�4 H�3

� �A2 0
A1 A2

� �
y0
y1

�
+

+
�
H�2 H�1

� �B0 B1 B2 0
0 B0 B1 B2

�2664
u0
u1
u2
u3

3775
which after some operations becomes

y2 =

�
�u0 + u1 + 2y0 � y20 + 2y21

�y0

�
Following similar techniques, we get

y3 =
�
H�5 H�4

� �A2 0
A1 A2

� �
y0
y1

�
+

+
�
H�3 H�2 H�1

� 24B0 B1 B2 0 0
0 B0 B1 B2 0
0 0 B0 B1 B2

35
266664
u0
u1
u2
u3
u4

377775
which becomes

y3 =

�
2u0 � u1 + u2 � 4y0 + 2y20 � 3y21

�u0 + y0 � y20 + y21

�
According to (14), a necessary and suf�cient condition in order
for the ARMA-representation (22) to have a forward solution
is

�
y0
y1

�
:=

2664
y10
y20
y11
y21

3775 = �H�2 H�1
H�3 H�2

� �
A2 0
A1 A2

� �
y0
y1

�
+

+

�
0 0
H�1 0

� �
B0 B1 B2 0
0 B0 B1 B2

�2664
u0
u1
u2
u3

3775 =

=

2664
y10
y20

u0 � y10 + y20 � y21
y21

3775

i.e.
y11 = u0 � y10 + y20 � y21

An algorithm for the implementation of the above forward
formula for more steps can be found in [8].

V. CONCLUSIONS
We have shown that in order to compute the fundamental

matrix sequence of the inverse of a regular polynomial matrix,
it is enough to compute the fundamental matrix of the inverse
of a matrix pencil, where the coef�cients of the matrix pencil
are written directly in terms of the matrix coef�cients of the
respective regular polynomial matrix. Closed formulae for the
forward, backward and symmetric solution of discrete time
ARMA representations has also been presented. The whole
theory has been illustrated via examples. Further research
is undergoing in order to provide tests for properties of
discrete time ARMA-representations such as reachability and
observability in terms of the fundamental matrix of the regular
polynomial matrix that describes the system.
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