On the fundamental matrix of the inverse of a
polynomial matrix and applications

N. P. Karampetakis
Department of Mathematics
Aristotle University of Thessaloniki
54006 - Thessaloniki -GREECE
Tel: +30 2310 997975 - Fax: +30 2310 997983
E-mail: karampet@math.auth.gr

Abstract— The aim of this work is twofold : a) it uses the
fundamental matrix of the resolvent of a regular pencil in order
to provide an algorithm for the computation of the fundamental
matrix of the resolvent of a polynomial matrix, and b) it proposes
a closed formula for the forward, backward and symmetric
solution of an AutoRegressive Moving Average (ARMA). This
closed formula is represented in terms of the fundamental matrix
of the resolvent of one of the polynomial matrices that describes
the ARMA representation.

I. INTRODUCTION

Let C be the set of complex numbers and C™*" the set
of m x n matrices with elements in C. If £/, A € C"*" and
zE — A is invertible for some z € C, then for some R > 0
and |z| > R, we have the Laurent expansion at infinity of

(zE—A)"" = P2t D20

+¢)OZ_1 + P +¢kz_k_1 + e — Z_l Z q)iz_i

i=—pn

where the coefficient matrices ®; € C"*" are indepen-
dent of z and are uniquely determined by E, A. &;,1 =
—u, —p+1, .. are known as the (forward) fundamental matrix
sequence [4]. When FE = [,,, the identity matrix, (21,, — A)_l,
which always exists is often called the resolvent of A; thus
(zE — A)f1 was considered by [6] as a generalized resolvent.
In [3] it is shown how to compute ®; given &5 and ¢_; and in
[6] it is shown how to compute ®; from F, A using the Drazin
inverse (where the Drazin inverse can be computed recursively
as described in [9]). A number of important properties of
the fundamental matrix sequence have been given in [3], [5].
The fundamental matrix sequence ®; plays a key role in the
analysis of discrete singular systems, since the solution of
discrete singular systems (forward, backward and symmetric)
as well as many of the properties of these systems such as
reachability, observability etc. can be described through the
fundamental matrix sequence as has been shown in [1], [4]
and [5].

Our first goal in this work is to show how to compute the
generalized resolvent of a regular polynomial matrix A (z) =
Ao + A1z + - + Agz9,A; € R™™ or otherwise how
to compute the fundamental matrix sequence of the inverse
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of a regular polynomial matrix and thus extend the results
presented by [3] and [6]. In order to accomplish this task
we propose a matrix pencil (zE — A) where the matrices
E, A are determined in terms of the coefficient matrices A;
of the regular polynomial matrix A (z) and then connect
the fundamental matrix sequences of the regular polynomial
matrix A (z) and the ones of the matrix pencil (zE — A). Our
second goal is to propose an application of the fundamental
matrix of a regular polynomial matrix to the solution of a
discrete time AutoRegressive (ARMA) representation. More
specifically we propose closed formulae for the forward solu-
tion (the solution in terms of the input sequence and the initial
conditions), backward solution (the solution in terms of the
final conditions and the input sequence) and the symmetric
solution (the solution in terms of the boundary conditions
(initial-final) conditions and the input sequence) of a discrete
time ARMA representation. The whole theory is illustrated via
examples.

II. FUNDAMENTAL MATRIX AND SOLUTIONS OF SINGULAR
SYSTEMS

Consider the singular dynamical system of equations

Expiq = Axy, + Buy k=0,1,...,.N -1 (1)
with z; € R™, u;, € R™. The interval of interest of index £ is
[0, N], with ug, nonzero for k = 0,1,.., N. By assuming that
the pencil zE — A is regular i.e. det (z0E — A) # 0 for some
zg € C, then for some R > 0 and |z| > R, the Laurent series
expansion about infinity for the resolvent matrix is given by

GE-A) "= 2"t 10 20+ Bz (2)
+..'+®szk‘71 +... :2171 Z @szz

i=—p

where p is the index of nilpotence and the sequence ®; is
known as the (forward) fundamental matrix. Similarly for
some R > 0 and for 0 < |z| < R, the Laurent series expansion



about zero for the resolvent matrix is given by

(zE—A) ' =Vyz P4 4+ Viz 4 3)
Vo 4 Vg b = Y VL
i=—p

where the sequence V_; is known as the (backward) funda-
mental matrix. The following properties of the fundamental
matrix are well known [3] :

Theorem 1: With (zE — A) regular and ®; defined by (2)

1.0, FE -, 1A =10,
2. B0, — A®,_ = 10,

B { (PgA)" D i>0 }
3. (I)z = —i—1 .
(—¢,1E) P 4 1 <0
4. &;EQ; = ¢, EP;
P4y 1<0,5<0
5.0, EP; = D 1>0,720
0 otherwise
_(I)i+j+1 1<0,7<0
6. ®;A®; = Dt 1>0,7>0
0 otherwise

where 0; is the Kronecker delta.

Explicit formulas for the coefficients ®; has been given in
[1], [2], [4] and [6]. There have been several interpretations
of the equation (1). >From a dynamical standpoint we may
consider that the initial condition z is given and that is desired
to determine the state x; in a forward fashion from the input
sequence and the previous values of the semistate. We call this
the forward solution of (1) and is given by [5] :

k+p—1

r, = & Fxg + Z @y —i—1Bu; “)

i=0

A variant of this is to consider x y as given and then determine
x) in a backward fashion from the input and future values of
the semistate. We call this the backward solution of (1) and
is given by [5] :

N—-1
zp = —Vi-n—1Ezn + Zi:k_p Vie—iBu; )
Another interpretation, arising in economics (where k& might
not be the time variable) and elsewhere, is to determine the
semistate x, for intermediate values of k, given the sequence
{ur} and admissible z¢ and zy. We call this the symmetric
solution of (1) and is given by [5] :

N—-1
2y = PpExo — ®_ninErn + Zi:o ®p_i_1Bu;  (6)
k=1,2...,N—1

In the next section, using the properties of the fundamental ma-
trix described above, we propose an algorithm for determining
the fundamental matrix of the inverse of a regular polynomial
matrix.

III. FUNDAMENTAL MATRIX OF THE RESOLVENT OF A
POLYNOMIAL MATRIX

Consider the polynomial matrix
Az) = Ao+ A1z + ...+ Agz? € R[z|"™"

By assuming that A (z) is regular i.e. det A(z) # 0, the
Laurent series expansion about infinity for the resolvent matrix
of A(z) is defined by :

o0
A(z) ' = Hg 2% + Hy 1291 + ... = Z Hjz ™"
i=—g
while the the Laurent series expansion about zero for the
resolvent matrix of A (z) is defined by :

A(z) ' =Nyz7V 4+ N1z~ '+

+No2® 4+ N_j2f 4 = Z N_;z"

t=—v

We introduce the following notation

Hy, Hi Hy—m+1
Hk+1 Hk Hk‘—'rn-i—Q

H]l;m — . . ) c erxmr
Hiyp 1 Hiqroo Hiviom

where the subscript on H ,lc"m indicates the subscript of the
(1,1) block-element of the matrix, whereas the superscript
indicates its block dimensions. Denote also by

Ay, Agy o A
- 0 Aq .
E=1| . . . .| e RITIT (7
0 0 Aq
Ap 0 0
- Ay Ay 0
A= ) c RIxar
Agy Ago - Ay

In the following we will denote by ®; the coefficients of the
Laurent series expansilon about infinity of the inverse of the

resolvent (ZE‘ + A)  defined by:

- —1
(zE + A) =0 B0 (8)
+Ppz o PR = Z Ozt
i=—p

and by V; the coefficients of the Laurent series expansion about
Zero, 1.e.

~ -\ —1
(zE+A) =Vpz P4+ VizT 4

(o)
4Vl 4+ Vo = Z V_;2!

i=—p



The next Theorem connects the coefficients 9§ the Laurent
expansion of A(z)~! and those of (zE‘ + fl)

Theorem 2: The coefficients H; (N;) of the Laurent series
expansion at infinity (zero) of A(z)~! and those ®; (V;) of
1

(ZE + fl) are connected by:

H_q—gi H_q—qi—1 H_2¢—gi+1
P, — [ . H_q_qit1 H_q—qi H_2q—qit2
i =d1 4 = . . .
H 41 H 4o H 4y
N*qi N*qifl N*qiqurl
Vi — N9 — N_git1 N_gi N_gi—q+2
i =N gy = . .
qui+q71 quiJrqf? qui

Proof: Since H; are coefficients of the Laurent series
expansion of A(z)~! we have that

A)AR) ' =1, <

(A0+A12++Aq2q) Z Hiz*i :IT<:>

—
q q

ZAiHi—k = 0, <or ZHi—kAi = 51Jr> ©

=0 1=0

Similarly we have that
ARAR) =1,

(Ao + A1z + ...+ Ay29) (Z N_M) I, &

q q
> ANy = 01, (0r > Ny = 5kfr> (10)
=0 =0

Now, we can easily check that

(zE'—l—fl) 271 i O,27" = Iy

i=—p
or equivalently
Ed; 4+ Ad; | =
A, Ay Ay
0 A, Ay
= . . . X
0 e 0 A,
H_q—qi H_q i H_3¢—git1
H—q—qi+1 H—q—qi H—2q—qi+2
X ) . . +
H—qi—l H—qi—2 H—qz—q

Ao 0 o0

Ay Ay -+ 0
+ . . .
Aqfl Aq72 AO
H_gi H_gi1 H_q—gi+1
H_git1 H_g H_g—giv2 | (9
X . . . =
H—qi+q—1 H—qi+q—2 H—qi

- Iqr6i

Note that we have replaced the matrices £, A in (2) with
E,—A in (8). Similarly we can check that

(ZE + fl) Z V_iz' | = Igr
i=—p
or equivalently
EVigy + AV, =
A, Ay Ay
0 A, A,
= . . . X
0 o 0 A,
quifq quiqul qui72q+1
« quifq+1 quifq quif2q+2
quifl qui72 quifq
Al A() R 0
+ . . ) . X
Aqfl Aq72 AO
N_gi N_gi-1 N_gi—g+1
y N—qi+1 N—qi N—qi—q+2 (170)
N—qi+q—l N—qi+q—2 N—qi
- Iq’r'(Si

Following the same reasoning, we can prove the second
relation that concerns the coefficients of 1the Laurent expansion
about zero of A(z)~! and (zE’ + fl) . ]

Based in the above Theorem it is now easy to compute
the coefficients of the Laurent series expansion at infinity of
A(z)~! by using the following algorithm.

Algorithm 1: Computation of the Laurent series expansion
at infinity (zero) of A(z)~!.

Step 1. Construct the matrices £, A defined in (7).

Step 2. Determine the matrices ®o, ®_; (V1,V)) of the

. N1
resolvent (zE + A) by using one of the known computing

techniques described in [1], [2], [4] and [6]. Compute the
coefficients H_g441,...,Hg—1 (N_2¢41,...,Ng—1) from the



following relations

H., H_,, H_3¢11
H,qul H,q H72q+2
@y = . ) .
H., H., H_,
Hy H_, H_,
H] H() H—q+2
b = . . .
qul Hq72 HO
N—q N—q—l N—2q+1
o | T e e
N, N N_,
Ny N_, N_gi1
N, N, N_gio
Vo= ) : .
Nq—l Nq—2 NO

Step 3. The rest terms can be determined by using the
property (3) of Theorem 1

(—@OA) o, i>0
Q; = N\ —i—1 =
<—<I>_1E) d, <0
H_q_qi H_q_qi— H_3¢—git1
. H—q—qi+1 H—q—qi H—Qq—qi+2
H_gi 4 H_g4i o H_, 4

Since ®; are the coefficients of the Laurent expansion at

infinity of (zE + A R , corresponding properties to the ones
defined in Theorem 1 can now be established for polynomial
matrices.

Theorem 3: With A (z) regular and ®; defined by (8) :
1. ®,E+®; 1 A=15,
2. BE®; + A®;_, = I);

(—<1>021) o, i>0
3. (I)z = o\ —i—1
(—<1>_1E) O, <0
4. ®,ED; = ®;EP,
i Dy i<0,j<0
5.9, ED; = iy 120,720
0 otherwise
3 —Pitjr1 1<0,7<0
6. D;AD; =< Dy i20,j=0
0 otherwise

Example 1: Consider the inversion of the polynomial ma-

trix

z+1 z-1
O R
(1 -1 11 0017,
Ll o[ v
N—— ——
Ag Ay Az

00 11

E_[AQ Al}_ 010 0
10 A | o000
000 1

1 -1 0 0
A_[Aoo]_looo
A AT -1
0 0 1 0

Step 2. Determine the matrices @, ®_; of the resolvent

SN
(zE + A using the algorithm presented in [6]. Find ¢ such
that det (cE + fl) #0ie. c=1

det [1><E+!1] =4

Then form the matrices

1 -3 -1 0
) N o £ 1
E:(CE+A) E= : 2 7
o I 1 -1
0o -+ o0 1

Then determine

_|Ho2 Hs | _rp(~ ~)71_
@0_{H1 Hz]_E (CE—I—A —
1 -1 2 2
o 1 -1 0
=1 0 -1 -1
0o 0 0 1
[t s )
@_1_{}[1 Ho} AP (1 — EEP) (cE+ A) =
0010
oo oo
1000 0
000 0

where EP denotes the Drazin inverse of . Therefore

2 2 “1 -1
IR
10 00 10
walon ) mefoa) smelo o)

Step 3. The rest terms can be determined by using the property



(3) of Theorem 1

(—%A) Bo=0,4 >0
®; = i1 =
(—<I>_1E) T, i<0
H—q—qi H—q—qi—l H—Qq—qi+1
. I'Iqut;n#1 H*q*qi H*Zq*qi+2
quifl qui72 quifq

IV. APPLICATIONS TO DIFFERENCE EQUATIONS

Consider a linear, time invariant discrete time system,
described by the difference equation:

Aoyr + Aryi+1 + - + AgUktq = Bour + - -+ + By
k=0,1,... N —gq

or otherwise

A(o)yr = B (o) up (11)

where o denotes the shift-forward operator, y;, : [0, N] — R"
is the output of the system, uy : [0, N] — R™ is a known
input of the system, and

A(o)=Ag+ Ao+ -+ Aot €Ro]"
B(o) =By + Bio+---+ By,o? € R[o]™™
The above description is also known as the AutoRegressive

Moving Average (ARMA) representation of our system. We
may rewrite the above equations for £k = 0,1,..,g — 1 as

follows
B - - N
Expq + Axpy=Buv, k=0,1,...,|—| —1 (12)
q
where
A, Ay A
) 0 A, As
E = ) ] c RYT*qr
0 0 A,
Ay 0 0
- Ay Ay 0
A= ) . .| eRITT
Aqfl Aq72 AO
B, By 0 0
B — 0 Bq BO c Rqrx2qr
0 - B, By Bo
Ykq+q—1 Ukg+2q—1
Ykq+q—2 Ukq+2q-2
T = . and vy, = .
Ykq+0 Ukq+0

and [N/q] denotes the integer part of the rational number N/q.
Since N is usually not a multiple of the number ¢, we can

always extend our interval [0, N] to [0, N] where N = ng,
by adding new states or subtracting some of the last states of
the system, always based on the initial-final conditions of the
system and the solution of the system that will describe in the
sequel. Therefore we assume in what follows, that NV = N =
ng.

Assume now that

-1

(zE' + 121) =z! i O,27"

i=—p
(B+4) " =Y Vs
i=—p
A(Z)71 = i Hiz*i
—
A(z) 7t = i N_;2'

Using the forward solution form described in (4), we can prove
the following Theorem.

Theorem 4. The forward solution of (11) is the following:

Yo=| Hopeq H_p—gt1 H_p—q | x
Aq o - 0 Yo
Aq—l Aq 0 Y1
X . . . . +
Aq Ay Aq Yg—1
+| Hox H_py1 -+ Hg |x
By B: - By 0 0 U
« 0 BO Bl Bq 0 U1l
0 s 0 By By --- Bq Uk+Gr+q

13)

Proof:  Applying the form of the forward solution of

singular systems described in (4) to the system (12) we have
that

Ykq+q—1
Ykq+q—2 ~ k+p—1 ~
. =z = PpLao + Zi:o Pr—i—1Bv;
Ykq+0
H_q_qk H_q_qk—1 H_2q—qi+1
H—q—qk+1 H—q—qk' H—QQ—qk+2
= . . . X
H—qk—l H—qk—2 H—qk—q
Aq Aq—l Al Yq—1
O Aq A2 yq_g
X . . . .
0 . 0 Aq Yo



H—qk+qi H—qk+qi—q+1

Zk—i—u—l quk+qi+1 T quk+qi7q+2 «
i=0 . : .
quk+qi+q71 quk+qi
B, -+ By 0 . 0 Uigr2g-1
| 0 By By .0 uiq+.2qf2
0 -+ By By1 -+ Bo Uig+0 i
H_2q—qk+1 H_g gk H_g gk
H_2¢—gi+t2 H_q—qk H_q—qk+1
= . . . . X
ququ quk72 qukfl
Aq 0 e 0 Yo
Agr Ay - 0 Y1
X . . . . . +
Aq Ay - Aq Yg—1
H—qk—q+1 Hq@»—q Hqtir—q+1
H*qk*tﬁ2 quAr7Q+1 Hqtir*q+2
. . . X
H*qk qur,l Hqtir
By -+ By, 0 - 0 -~
« 0 By --- By 0
: o T T .. : U(k+d,r+q)q—1
0 --- By By --- By U(k+d,+q)q

Taking the last of the above equations and replacing kg with
k we get the forward formula (13). ]

A necessary and sufficient condition in order for the
ARMA -representation (11) to have a solution, is that relation
(13) is satisfied for £ =0,1,...,g — 1 i.e.

Yo H_, H_ 4 H_y
n H g H_, H_,
. = . . . X
Yg—1 H_ 9411 H_2442 H_,
A, 0o --- 0 Yo
Aq—l Aq A 0 Y1
X . . . . . +
Al A2 e Aq Yq-1
H, e Hy, 0 0
H 4 Hs 4 H, 0
+ . . X
H_Q+1 H@T_Q“'l HQT_Q+2 e qu
By -+ By, 0 - 0 o
« 0 By -~ B, - 0 u.l
0 --- By B --- B, U2g—1+4,
(14)

Using similar techniques and the backward solution form

described in (4), we get the backward solution formula for
the ARMA-representation (11).

Theorem 5: The backward solution of (11) is the following:

Yo =] Nn—x Nn—i-1 NN—k—q+1 | ¥
AO 0 0 YN
Ay Ay 0 YN—1
X . . . +
Ago1 Age Ao YN—q+1
+[ NN—k—q NN-k—g—1 N, [x (1)
B, By 0 0 n
| o B By 0 uN-1
0 -+ B, By - By Uk—p

Proof: Let N = [%} — 1. We are interested for the

vectors xj, where 0 < k < N = % —1= —qgk+N+1-—
q > 0. Then using the relation (10) we obtain the following
relation that we shall use in the sequel

N_gkyn11 N_gkynN N_jhyN—gt1
N_gi+nt+2  Noghtn+1 N_ gkt N—q+2
- . . . . X
qukJrNJrq N*qk+N+q71 N*qk+N+1
Ay Agq o A
D P
X . . . . =
0 ... 0 A,
N—qk+N+1—q N—qk+N—q N—qk+N—2q+1
quk+N+27q quk+N+17q quk+N72q+2
= . . . . X
N_git+nN N_gk+N—-1 N_gk+N+1—¢
(16)
Ao 0o .- 0
A, Ay - 0
X . . .
Ag 1 Agy - A

Applying the backward solution of singular systems described
in (5) to the system (12) we have that

Ykq+q—1
Ykq+q—2 - N-1 -
f =rp ==V yEry+ Zi:kip Vi—iBu; =
Ykq+0
N_g(k-~-1) N_g(k-N-1)—q+1
B N—q(k—N—1)+l N—q(k—N—l)—q+2
N N G

—q(k—N—l)



Aq Ag Ay YNg+q—1
0 A, Ay YNg+q—2
X . . .
0 0 A YNg+0
Nquwfi) %*q(k*i)*qﬂ
N-1 —q(k—i)+1 —q(k—i)—q+2
P s : "
N_qk—i)+q—1 N_q(k—i)
B, By 0 0 Uigr2g-1
y 0 Bq .. By 0 uiq+'2q—2
0 -+ By By By Uig+0
N_ghn+1 N_ gkt N—g+1
N=[N#1] g N_grtN+2 N_jkyN—g+2
= — . . X
N_gk+N+q N_gk+N+1
Aq Aq—l - Al YN
0 A, o Ay YN_1
X . . . . . +
0 - 0 A, YN—q
N_gk+N+1 N_gp—g+1
N_gktN+2 N—gp—g+2
. . X
N_gktN+q Nogp
B, --- By 0 0 uN
" 0 B, - By 0 UN-—1
0 s Bq Bq—l Bo U(k,p)q
N—qk+N+1—q N—qk+N—2q+1
(16) N—qk+N+2—q N—qk+N—24+2 %
N_gr+n N_gk4N+1—¢
Ag 0 YN
Ay Ag YN-1
X . . . +
Aq—l Aq—2 te AO YN—q
N_gk+N+1 qp—q+1
N_gktN+2 N—gp—g+2
. . X
N_gktN+q Nogp
B, --- By 0 0 uN
" 0 B, - By 0 UN-—1
0 ce Bq Bq—l Bo U(k,p)q

By taking the last of the above equations and replacing kq

with k& we get the backward formula (15). [ |

A necessary and sufficient condition in order for the
ARMA-representation (11) to have a solution, is that the
relation (15) is satisfied £k =0,1,...,q — 1 i.e.

yN NO N—] N7q+1
YnN-1 Ny No N_gi2
= . . X
YN —q+1 Ng—1 Ny_2 Ny
Ay Ao 0 YN-1
X ) . : +
Aq—l Aq—2 . AO YN —gq+1
N_, N_, 0 o
N_gt1 N_pt1 N_p 0
. . . . X
N_y pr+qfl pr+q72 pr
B, By 0 .. 0 un
y 0 By By 0 uN.—l
0 -+ B, By - DBy Uk—p
17)

Using the symmetric solution form described in (6), we get
the symmetric solution formula for the ARMA-representation

(11).

Theorem 6: The symmetric solution of (11) is the follow-
ing:

Ye=| Hop-1 H_p—2 H_jq ] x
Aq Aq—l Al Yq—1
0 Aq Ay Yq—2
X . )
0o ... 0 A, %o
+[ Hv-k Hy—p—1 Hy_q-k41 | ¥
Ag o - 0 YN
Ay Ao 0 YN—1
X . . . . . +
Agr Ag—2 -+ Ay YN—g+1
+ | Hogen—k H_gyn—p—1 H_p | x (18)
By, -~ By 0 - 0 uy
o By B 0 uN -1
0 -+ B, Byy - By Ug



Proof: Let N = [N'H} — 1. Using relation (10) we have By - By 0

q

HN_3¢—qk+2
Hy_3q—qk+1

HN72q7qk+l
Hy _oq—gk+2

Hququ HN72q7qk+1
Aq Aq—l e Ay
0 Aq e Ay
0 - 0 A,
HNn_g—qk+1 Hy _2q—qk+2

HN—q—qk+2 HN—Qq—qk+1

y 0 B, By
(19) 0 --- By B,
H_q—qk
N=[2 oy | Hog gk
quk 1
Aq Aqfl
0 Aq
X . .
0

HN72q7qk+1

Uiqg+2q—1
0 Uiqg+2q—2
BO Uig+0
H_3q—qk+1
H_5q—qk+2
. X
H_gr—q
Al Yg—1
Aa Yq—2
Aq Yo

HN73q7qk+2

Hy gk Hy_g—gkt1 Hy _2q—qki2 HN_3¢—qr+1
Ao 0 .0 - . . X
A A e 0
'1 .0 Hququ HN72q7qk+1
: . - : Aq Aq—l Al YN
Agor Agz - Ao 0 A, A, Yn—1
X . . . . +
Applying the form of the symmetric solution of singular : :
systems described in (6) to the system (12) we have that 0 Aq YN—gq+1
Ykatq—1 H sgiN—gh+1  H-2g4N—gk H_gr—g+1
Ykq+q—2 - ~ H_ _ H_ _ H_
4 .q = = q)kExO o (I)7N+kE$N+ + 2‘1+{V qk+2 2q+?\7 gk+1 qk' q+2 %
Ykq+0 ~ quJerqk H*L]*Hqukfl T quk
N-1 .
+ Zi:o Oy 1Bv; By - B 0 uN
H_y g H_gqis1 y 0 B, --- By 0 UN_1 _
H_ gkt H 24 qk12 :
: : 0 -+ B, By Bo Uo
H—qk—l H—qk—q H_g—qk H_2q—qk+1 1
Ay Agr 0 A Yg-1 (19) H-g—qi+1 H_2q—gk+2 y
0 Ay - A Yq—2 o : :
: : . : : H_g11 H_4k—q |
] 0 - 0 A, Yo Ay Aga Ay Yg—1 1
H_ g qN—gk HyN—gk—2¢-1 « 0 Aq Ay Yq—2 n
—q+gN—qk+1 HyN - qh—2q-2 : :
: : 0 Aq Yo |
L Hyn—gk—1 HyN—qh—q
Ay Ag Ay YNg+q—1 Hy_q—qk+1 HN _2q—qk+2
0 Ay Az YNg+q—2 HN_q—qk+2 HN—2q—qk+1
X . . . + . . X
L 0 T 0 A YNg+0 Hy gk HN_q—qit1
H_gitqi H_gktqi—q+1 Ao 0 0 Yn
N-1 | H_grtqit1 H_jiiqi—qe2 Ay Ay 0 YN-1
2 : : x x : : . +
=0 : : : : :
H_gktqitq-1 H_ghtqi Ago1 Age Ao YN—g+1



H—2q+N—qk+1 H—qk—q+1
H72q+N7qk+2 quk7q+2
. . X
H*q+N*qk H*qk
Bq By 0 0 uy
R e
0 -+ B, By1 -+ Bo Ug

Taking the last of the above equations and replacing kg with
k we get the symmetric formula (18). ]

A necessary and sufficient condition in order for the
ARMA-representation (11) to have a solution is that the
relation (18) is satisfied for £k = 0,1,...,¢q — 1 and k =
N,N—-1,..,.N—q+1ie.

Yo H_, H_, H_,
Y1 H72 H73 qufl
. = . . . X
Yq—1 qu qufl H72q
Ay A Ay Yg—1
0 Aq Ay Yg—2
X . . .
0 0 Aq Yo
Hy Hy_ Hy—g+1
Hy_1 Hpy_o Hy_,
+ . . ) X (20)
HN—q+1 HN—q HN—2q+2
Ag 0 0 YN
Ay Ap 0 YN—1
X . . +
Aq—l Aq—2 AO YN —q+1
Hy_, H,
Hy_g—1 H_4
+ . . X
Hy 2411 H g
B, By 0 0 un
0 B, By 0 UN-1
X
0 Bq Bq—l BO o
and
YN H Ny H_n_q4
YN—-1 HfN H7N7q+1
= . . X
YN—gq+1 H nyg—2 H N1

Aq Aq_1 Ay Yg—1
0 Aq AQ Yqg—2
X . . .
0 0 Aq Yo
Hy H_gt1
H, H_yio
+ . . X
Hq—l HO
AO 0 0 YN
A1 Ao 0 YN -1
X ) : . + @D
Aq—l Aq—2 AO YN —q+1
H_, H_y
H_g41 H_ni1
. . X
H_1 H—N+q—1
B, By 0 0 n
y 0 B, - By . 0 UN—1
0 . Bq qul -+ By Uo

Other formulae for the forward, backward and symmetric
solutions as well as the consistency of initial and/or final
conditions of discrete time ARMA-representations can be
found in [7]. An implementation of these formulae in the
Maple symbolic language can be found in [8]. It is easily
seen that the above results coincide with the ones presented
in [5] when the A (z) = zFE — A or the known results from
the state space theory when A (z) = zI,, — A.

Example 2: Consider the following discrete time ARMA

representation:
z+1 z—1||y| |1
TRl e
Then from the first example we have that
. . o1
&, = EP (cE+A) - 23)
-1 -1 2 2
o 1 -1 0| [H, Hs
o 1 0 -1 -1 | | H.y H_,
0 0 0 1
and
R . N
<I>_1:—(I4—EED)AD (cE+A) - 4
0 010
oo o0 0| [H H,
10 0 0 0| | HH Hy
00 00



Using property (3) of Theorem 3 we get that

_ | Ha Hs | 5 3e
®) = { e Ho } = — By Ad, = (25)
-4 -3 7 6
1 -2 =2
2 2 -4 -3

-1 0 1 1
Using (23, 24, 25) we conclude that

76 4 -3
mo= | Sl 3

2 2 1 -1 10
e e A RN T

The forward solution of the ARMA system is given by (13)
and so

Az 0] [wol
yo=[ H-y H_3 | |:A1 Az} {yl +

Ug
BO B]_ BQ 0 (751

+ [H_2 H_l] |: O BO B1 BQ (15)
U3

which after some operations becomes

B [—uo +ur + 2y — Y& + 2y?}
Y2 = %

Following similar techniques, we get

w2 B

Y1
Uo
BU Bl BQ 0 0 (751
+ [H,g H o H,]_] 0 By By By 0 U2
0 0 B() Bl B2 us
Uy

which becomes
ys = [2’&0 —uy +u — 4y02+ 2y§ - 3y%]
—Uo + Yo — Yy + Y1
According to (14), a necessary and sufficient condition in order

for the ARMA-representation (22) to have a forward solution
is

Yo )
o L= ) = Bl 2l B
vi |7 |ui|  |H-s Hoo| A1 As| |
ui
UO_
+|: 0 0:| |:Bo Bl 32 0:| uy|
H,1 0 0 Bo Bl B2 U9
U3_
Yo
vt

uo —Yp + Y5 — Ui
2
U1

i.e.

yi =uo —yo +vg — vt
An algorithm for the implementation of the above forward
formula for more steps can be found in [8].

V. CONCLUSIONS

We have shown that in order to compute the fundamental
matrix sequence of the inverse of a regular polynomial matrix,
it is enough to compute the fundamental matrix of the inverse
of a matrix pencil, where the coefficients of the matrix pencil
are written directly in terms of the matrix coefficients of the
respective regular polynomial matrix. Closed formulae for the
forward, backward and symmetric solution of discrete time
ARMA representations has also been presented. The whole
theory has been illustrated via examples. Further research
is undergoing in order to provide tests for properties of
discrete time ARMA-representations such as reachability and
observability in terms of the fundamental matrix of the regular
polynomial matrix that describes the system.
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