DFT calculation of the generalized and drazin inverse of a polynomial matrix
N. Karampetakis, S. Vologiannidis

Department of Mathematics
Aristotle University of Thessaloniki
Thessaloniki 54006, Greece
http://anadrasis.math.auth.gr

Objectives

- A new algorithm is presented for the determination of the generalized inverse and the drazin inverse of a polynomial matrix based on the discrete Fourier transform.
- The above algorithms are implemented in the Mathematica programming language.

Discrete Fourier Transform

Definition 1. In order for the finite sequence $X(k)$ and the sequence $\tilde{X}(k)$ to constitute a DFT pair the following relations should hold [Dudgeon, 1984]:
$\tilde{X}(k)=\sum^{M} X(k) W^{-k r}, X(k)=\frac{1}{M+1} \sum^{M} \tilde{X}(k) W^{k r}$
where $W=e^{\frac{2 \pi j}{M+1}}$ and $X(k), \tilde{X}(k)$ are discrete argument matrix-valued functions, with dimensions $p \times m$.

Definition 2. In order for the finite sequence $X\left(k_{1}, k_{2}\right)$ and the sequence $\tilde{X}\left(r_{1}, r_{2}\right)$ to constitute a DFT pair the following relations should hold [Dudgeon, 1984]:
$\tilde{X}\left(r_{1}, r_{2}\right)=\sum_{k_{1}=0}^{M_{1}} \sum_{k_{2}=0}^{M_{2}} X\left(k_{1}, k_{2}\right) W_{1}^{-k_{1} r_{1}} W_{2}^{-k_{2} r_{2}}, X\left(k_{1}, k_{2}\right)=\frac{1}{R} \sum_{r_{1}=0}^{M_{1}} \sum_{r_{2}=0}^{M_{2}} \tilde{X}\left(r_{1}, r_{2}\right) W_{1}^{k_{1} r_{1}} W_{2}^{k_{2} r_{2}}$
where
$W=e^{\frac{2 \pi j}{M_{i}+1}}, R=\left(M_{1}+1\right) \times\left(M_{2}+1\right)$
and $X\left(k_{1}, k_{2}\right), \tilde{X}\left(r_{1}, r_{2}\right)$ are discrete argument matrix-valued functions,
with dimensions $p \times m$.

Generalized Inverse

For every matrix $A \in R^{p \times m}$, a unique matrix $A^{+} \in R^{m \times p}$, which is called generalized inverse, exists satisfying
(i) $A A^{+} A=A$
(ii) $A^{+} A A^{+}=A^{+}$
(iii) $\left(A A^{+}\right)^{T}=A A^{+}$
(iv) $\left(A^{+} A\right)^{T}=A^{+} A$
where A^{T} denotes the transpose of A. In the special case that the matrix A is square nonsingular matrix, the generalized inverse of A is simply its inverse i.e. $A^{+}=A^{-1}$.

In an analogous way we define the generalized inverse $A(s)^{+} \in R(s)^{m \times p}$ of the polynomial matrix $A(s) \in R[s]^{p \times m}$

Computation of the generalized inverse

[Karampetakis 1997] Let $A(s) \in R[s]^{p \times m}$ and
$\mathrm{a}(\mathrm{s}, \mathrm{z})=\operatorname{det}\left[z I_{p}-A(s) A(s)^{T}\right]=a_{0}(s) z^{p}+a_{1}(s) z^{p-1}+\ldots+a_{p-1}(s) z+a_{p}(s)$,
$a_{0}(s)=1$, be the characteristic polynomial of $A(s) A(s)^{T}$. Let $a_{p}(s) \equiv 0, \ldots, a_{k+1}(s) \equiv 0$ while $a_{k}(s) \neq 0$ and $\Lambda:=\left\{s_{i} \in R: a_{k}\left(s_{i}\right)=0\right\}$ Then the generalized inverse $A(s)^{+}$of $A(s)$ for $s \in R-\Lambda$ is given by

$$
A(s)^{+}=-\frac{1}{a_{k}(s)} A(s)^{T} B_{k-1}(s), B_{k-1}(s)=a_{0}(s)\left(A(s) A(s)^{T}\right)^{k-1}+\ldots+a_{k-1}(s) I_{p}
$$

If $k=0$ is the largest integer such that $a_{k}(s) \neq 0$, then $A(s)^{+}=0$. For those $s_{i} \in \Lambda$ find the largest integer $k_{i}<k$ such that $a_{k_{i}}\left(s_{i}\right) \neq 0$ and then the generalized inverse $A\left(s_{i}\right)^{+}$of $A\left(s_{i}\right)$ is given by

$$
A\left(s_{i}\right)^{+}=-\frac{1}{a_{i}\left(s_{i}\right)} A\left(s_{i}\right)^{T} B_{k_{i}-1}\left(s_{i}\right), B_{k_{i}-1}\left(s_{i}\right)=a_{0}(s)\left(A\left(s_{i}\right) A\left(s_{i}\right)^{T}\right)^{k-1}+\ldots+a_{k_{i}-1}\left(s_{i}\right) I_{p}
$$

Computation of the generalized inverse via DFT

Step 1. (Evaluation of the polynomial $a(s, z)$)

$$
a(s, z)=\sum_{l_{1}=0}^{n_{1}} \sum_{l_{2}=0}^{n_{2}} a_{l_{1}, l_{2}} s^{l_{1} z_{2}}=\operatorname{det}\left[z I_{p}-A(s) A(s)^{T}\right]
$$

- We use the following $R=(2 p q+1) \times(p+1)$ interpolation points $u_{i}\left(r_{j}\right)=W_{i}^{-r_{j}}, i=1,2$ and $r_{j}=0,1, \ldots, M_{i}$ where $\mathrm{W}_{i}=e^{\frac{2 \pi i}{M+1}} i=1,2 ; M_{1}=2 p q ; M_{2}=p$
- $\quad \tilde{a}_{r, r_{2}}=\operatorname{det}\left[u_{2}\left(r_{2}\right) I_{p}-A\left(u_{1}\left(r_{1}\right)\right) A\left(u_{1}\left(r_{1}\right)\right)^{T}\right]=\sum_{l_{1}=0}^{n_{1}} \sum_{l_{2}=0}^{n_{2}} a_{l_{1, l}, 2} W_{1}^{-r l_{l}} W_{2}^{-r_{2} / l_{2}}$ $\left[\tilde{a}_{r_{1}, r_{2}}\right]$ and $\left[a_{l_{1}, l_{2}}\right]$ form a DFT pair.

$$
a_{l_{1}, l_{2}}=\frac{1}{R} \sum_{r_{1}=0}^{n_{1}=} \sum_{r_{2}=0}^{n_{2}} \tilde{r}_{r_{1}, W_{2}} W_{1}^{r_{1}} W_{2}^{r_{2} l_{2}}
$$

Step 2. (Evaluate $a_{k}(s)$)

Find $k: a_{k+1}(s)=a_{k+2}(s)==a_{p}(s)=0$ and $a_{k}(s) \neq 0$ or $a_{l_{1}, 0}=a_{l_{1}, 1}==a_{l_{1}, k+1}=0 \quad \forall l_{1}$ and $a_{l, k} \neq 0$ for some k.

Step 3. (Evaluate $B(s)=A(s)^{T} B_{k-1}(s)$ where

$$
\left.B_{k-1}(s)=a_{0}(s)\left(A(s) A(s)^{T}\right)^{k-1}+\ldots+a_{k-1}(s) I_{p}\right)
$$

- We use the following $R=(2 p-1) q+1$ interpolation points

$$
u(r)=W^{-r}, W=e^{\frac{2 \pi j}{(2-1) q+1}}
$$

- $\quad \tilde{B}_{r}=B(u(r))=\sum_{l=0}^{n} B_{l} W^{-l r}$
$\left[\tilde{B}_{i}\right]$ and $\left[B_{l}\right]$ form a DFT pair
- $\quad B_{l}=\frac{1}{R} \sum_{r=0}^{n} \tilde{B}_{r} W^{l r}, l=0,1, \ldots,(2 p-1) q$

Step 4. Evaluate the generalized inverse

$$
A(s)^{+}=\frac{B(s)}{-a_{k}(s)}
$$

Drazin I nverse

For every matrix $A \in R^{m \times m}$, a unique matrix $A^{D} \in R^{m \times m}$, which is called Drazin inverse, exists satisfying
(i) $A^{k+1} A^{D}=A^{k}$ for $k=\operatorname{ind}(A)=\min \left(k \in N: \operatorname{rank}\left(A^{k}\right)=\operatorname{rank}\left(A^{k+1}\right)\right)$
(ii) $A^{D} A A^{D}=A^{D}$
(iii) $A A^{D}=A^{D} A$

Drazin I nverse

[Staminirovic and Karampetakis 2000] Consider a nonregular one-variable rational matrix $A(s)$. Assume that

$$
a(z, s)=\operatorname{det}\left[z I_{m}-A(s)\right]=a_{0}(s) z^{m}+a_{1}(s) z^{m-1}+\ldots+a_{m-1}(s) z+a_{m}(s) \text { where }
$$

$a_{0}(s) \equiv 1, \quad z \in C$ is the characteristic polynomial of $\mathrm{A}(\mathrm{s})$ consider the following
sequence of $\mathrm{m} \times m$ polynomial matrices

$$
\mathrm{B}_{j}(s)=a_{0}(s) A(s)^{j}+\ldots+a_{j-1}(s) A(s)+a_{j}(s) I_{m}, a_{0}(s)=1, \quad j=0, \ldots, m
$$

Let $a_{m}(s) \equiv 0, \ldots, a_{t+1}(s) \equiv 0, \quad a_{t}(s) \neq 0$. Define the following
set $\Lambda=\left\{s_{i} \in C: a_{t}\left(s_{i}\right)=0\right\}$ Also assume $B_{m}(s) \equiv 0, \ldots, B_{r}(s)=0, B_{r-1}(s) \neq 0$ and $\mathrm{k}=\mathrm{r}-\mathrm{t}$.
In the case that $s \in C \backslash \Lambda$ and $k>0$, the Drazin inverse of $A(s)$ is given by

$$
\begin{aligned}
& A^{D}=(-1)^{k+1} a_{t}(s)^{-k-1} A(s)^{k} B_{t-1}(s)^{k+1} \\
& B_{t-1}(s)=a_{0}(s) A(s)^{t-1}+\ldots+a_{t-2}(s) A(s)+a_{t-1}(s) I_{m}
\end{aligned}
$$

In the case $s \in C \backslash \Lambda$ and $k=0$, we get $A(s)^{D}=O$.

Computation of the Drazin I nverse via DFT

Step 1 (Evaluation of a(s, z))

$$
a(s, z)=\sum_{l_{1}=0}^{n_{1}} \sum_{l_{2}=0}^{n_{2}} a_{l_{1}, l_{2}} s^{l_{1}} z^{l_{2}}=\operatorname{det}\left[z I_{m}-A(s)\right]
$$

- We use the following $R=(2 m q+1) \times(m+1)$ points

$$
u_{i}\left(r_{i}\right)=W_{i}^{-r_{i}}, i=1,2, W_{i}=e^{\frac{2 \pi j}{M_{i}+1}} i=1,2 ; M_{1}=2 m q ; M_{2}=m
$$

- $\quad \tilde{a}_{r_{1}, r_{2}}=\operatorname{det}\left[u_{2}\left(r_{2}\right) I_{m}-A\left(u_{1}\left(r_{1}\right)\right)\right]=\sum_{l_{1}=0}^{n_{1}} \sum_{l_{2}=0}^{n_{2}} a_{l_{1}, l_{2}} W_{1}^{-r_{1} l_{1}} W_{2}^{-r_{2} l_{2}}$
[$\left.\tilde{a}_{r_{1}, r_{2}}\right]$ and $\left[a_{l_{1}, l_{2}}\right]$ form a DFT pair
- $a_{l_{1}, l_{2}}=\frac{1}{R} \sum_{r_{1}=0}^{n_{1}} \sum_{r_{2}=0}^{n_{2}} \tilde{a}_{r_{1}, r_{2}} W_{1}^{r_{1} l_{1}} W_{2}^{r_{2} l_{2}}, l_{1}=0,1, \ldots, 2 m q, l_{2}=0,1, . ., m$

Step 2

Find $t: a_{t+1}(s)=a_{t+2}(s)=\ldots=a_{m}(s)=0$
$a_{t}(s) \neq 0$ or $a_{r_{1}, 0}=a_{r_{1}, 1}==a_{r_{1}, t+1}=0 \quad \forall r_{1}$ and $a_{r_{1}, t} \neq 0$ for some t.

Step 3 (Evaluate $r \geq t: B_{m}(s) \equiv 0, \ldots, B_{r}(s) \equiv 0, B_{r-1}(s) \neq 0$

$$
\left.B_{j}(s)=A(s)^{j}+a_{1}(s) A(s)^{j-1}+a_{j-1}(s) A(s)+a_{j}(s) I_{m}\right)
$$

$$
j=m
$$

Determine the value of $B_{j}(s)$ at the following $n_{j}+1$ points (or any other $n_{j}+1$ distinct points)

$$
u(r)=W^{-r}, W=e^{\frac{2 \pi j}{n_{j j}}}
$$

Do WHILE $\left(B_{j}(s)=0 \quad \forall u(r)\right)$
$j=j-1$
Determine the value of $B_{j}(s)$ at the following $n_{j}+1$ points

$$
u(r)=W^{-r}, W=e^{\frac{2 \pi j i}{n_{j}+1}}
$$

END DO
$r=j$

Step 4 (Evaluation of $\left.A(s)^{k} B_{t-1}(s)^{k+1}\right)$

- $B(s)=A(s)^{k} B_{t-1}(s)^{k+1}=\sum_{l=0}^{n} B_{l} s^{l}$,

$$
B_{t-1}(s)=a_{0}(s) A(s)^{t-1}+\ldots+a_{t-2}(s) A(s)+a_{t-1}(s) I_{m}
$$

- We use the following $(\mathrm{n}+1)$ interpolation points $u(r)=W^{-r}, W=e^{\frac{2 \pi j}{n+1}}$
- $\quad \tilde{B}_{r}=\sum_{l=0}^{n} B_{l} W^{-l r}$
[\tilde{B}_{i}] and $\left[B_{l}\right]$ form a DFT pair
- $\quad B_{l}=\frac{1}{R} \sum_{r=0}^{n} \tilde{B}_{l} W^{l r}$

Step 5 (Evaluation of $\left.a_{t}(s)^{k+1}\right)$

- $\quad a(s)=a_{t}(s)^{k+1}=\sum_{l=0}^{n} a_{l} s^{l}$
- We use the following $(\mathrm{n}+1)$ interpolation points

$$
u(r)=W^{-r}, W=e^{\frac{2 \pi j}{n+1}}
$$

- $\quad \tilde{a}_{r}=a(u(r))=\sum_{l=0}^{n} a_{l} W^{-l r}$
$\left[\tilde{a}_{l}\right]$ and $\left[a_{l}\right]$ form a DFT pair
- $a_{l}=\frac{1}{R} \sum_{r=0}^{n} \tilde{a}_{r} W^{l r}, \quad l=0,1, \ldots, n$

Step 6. (Evaluation of the Drazin inverse)

$$
A(s)^{D}=\frac{B(s)}{a(s)}
$$

Implementation

- The above algorithms have been implemented in Mathematica.
- The following graphs shows the efficiency of the DFT based algorithms compared to the algorithms described in [Karampetakis 1997, Staminirovic and Karampetakis 2000]. The red surface represents the DFT based algorithms.

Graphs

Generalized Inverses

Conclusions

- Two new algorithms have been presented for the computation of the generalized inverse and Drazin inverse of a polynomial matrix.
- The proposed algorithms proved to be more efficient from the known ones in the case where the degree and the size of the polynomial matrix get bigger.
- The proposed algorithms can be easily extended to the multivariable polynomial matrices.

