DFT calculation of the generalized and drazin inverse of a polynomial matrix

N. Karampetakis, S. Vologiannidis

Department of Mathematics Aristotle University of Thessaloniki Thessaloniki 54006, Greece <u>http://anadrasis.math.auth.gr</u>

## Objectives

- A new algorithm is presented for the determination of the *generalized inverse* and the *drazin inverse* of a polynomial matrix based on the discrete Fourier transform.
- The above algorithms are implemented in the Mathematica programming language.

#### **Discrete Fourier Transform**

**Definition 1.** In order for the finite sequence X(k) and the sequence  $\tilde{X}(k)$  to constitute a DFT pair the following relations should hold [Dudgeon, 1984]:

$$\tilde{X}(k) = \sum_{k=1}^{M} X(k) W^{-kr}, X(k) = \frac{1}{M+1} \sum_{k=1}^{M} \tilde{X}(k) W^{kr}$$

where  $W = e^{\frac{2\pi j}{M+1}}$  and X(k),  $\tilde{X}(k)$  are discrete argument matrix-valued functions, with dimensions  $p \times m$ .

**Definition 2.** In order for the finite sequence  $X(k_1, k_2)$  and the sequence  $\tilde{X}(r_1, r_2)$  to constitute a DFT pair the following relations should hold [Dudgeon, 1984]:

$$\tilde{X}(r_1, r_2) = \sum_{k_1=0}^{M_1} \sum_{k_2=0}^{M_2} X(k_1, k_2) W_1^{-k_1 r_1} W_2^{-k_2 r_2}, X(k_1, k_2) = \frac{1}{R} \sum_{r_1=0}^{M_1} \sum_{r_2=0}^{M_2} \tilde{X}(r_1, r_2) W_1^{k_1 r_1} W_2^{k_2 r_2}$$

where

$$W = e^{\frac{2\pi j}{M_i + 1}}, R = (M_1 + 1) \times (M_2 + 1)$$
  
and  $X(k_1, k_2), \tilde{X}(r_1, r_2)$  are discrete argument matrix-valued functions,  
with dimensions  $p \times m$ .

## **Generalized Inverse**

For every matrix  $A \in \mathbb{R}^{p \times m}$ , a unique matrix  $A^+ \in \mathbb{R}^{m \times p}$ , which is called generalized inverse, exists satisfying

- (i)  $AA^+A = A$
- (ii)  $A^+AA^+ = A^+$
- (iii)  $\left(AA^{+}\right)^{T} = AA^{+}$

(iv) 
$$(A^{+}A)^{T} = A^{+}A$$

where  $A^T$  denotes the transpose of A. In the special case that the matrix A is square nonsingular matrix, the generalized inverse of A is simply its inverse i.e.  $A^+ = A^{-1}$ .

In an analogous way we define the generalized inverse  $A(s)^+ \in R(s)^{m \times p}$  of the polynomial matrix  $A(s) \in R[s]^{p \times m}$ 

#### Computation of the generalized inverse

[Karampetakis 1997] Let  $A(s) \in R[s]^{p \times m}$  and  $a(s,z) = det \left[ zI_p - A(s)A(s)^T \right] = a_0(s)z^p + a_1(s)z^{p-1} + ... + a_{p-1}(s)z + a_p(s),$   $a_0(s) = 1$ , be the characteristic polynomial of  $A(s)A(s)^T$ . Let  $a_p(s) \equiv 0, ..., a_{k+1}(s) \equiv 0$ while  $a_k(s) \neq 0$  and  $\Lambda := \{s_i \in R : a_k(s_i) = 0\}$  Then the generalized inverse  $A(s)^+$  of A(s) for  $s \in R - \Lambda$  is given by  $A(s)^+ = -\frac{1}{a_k(s)}A(s)^T B_{k-1}(s), B_{k-1}(s) = a_0(s) (A(s)A(s)^T)^{k-1} + ... + a_{k-1}(s)I_p$ If k = 0 is the largest integer such that  $a_k(s) \neq 0$ , then  $A(s)^+ = 0$ . For those  $s_i \in \Lambda$ find the largest integer  $k_i < k$  such that  $a_{k_i}(s_i) \neq 0$  and then the generalized inverse  $A(s_i)^+$  of  $A(s_i)$  is given by

$$A(s_i)^{+} = -\frac{1}{a_{k_i}(s_i)} A(s_i)^{T} B_{k_i-1}(s_i), \ B_{k_i-1}(s_i) = a_0(s) \left( A(s_i) A(s_i)^{T} \right)^{k-1} + \dots + a_{k_i-1}(s_i) I_p$$

Computation of the generalized inverse via DFT Step 1. (Evaluation of the polynomial a(s,z))

$$a(s,z) = \sum_{l_1=0}^{n_1} \sum_{l_2=0}^{n_2} a_{l_1,l_2} s^{l_1} z^{l_2} = \det \left[ zI_p - A(s)A(s)^T \right]$$

• We use the following  $R = (2pq+1) \times (p+1)$  interpolation points  $u_i(r_j) = W_i^{-r_j}, i = 1, 2 \text{ and } r_j = 0, 1, ..., M_i$ where  $W_i = e^{\frac{2\pi j}{M_i + 1}} i = 1, 2; M_1 = 2pq; M_2 = p$ •  $\tilde{a}_{r_1, r_2} = \det[u_2(r_2)I_p - A(u_1(r_1))A(u_1(r_1))^T] = \sum_{l=0}^{n_1} \sum_{l=0}^{n_2} a_{l_1, l_2} W_1^{-r_l l_1} W_2^{-r_2 l_2}$ 

 $[\tilde{a}_{r_1,r_2}]$  and  $[a_{l_1,l_2}]$  form a DFT pair.

• 
$$a_{l_1,l_2} = \frac{1}{R} \sum_{r_1=0}^{n_1} \sum_{r_2=0}^{n_2} \tilde{a}_{r_1,r_2} W_1^{r_1 l_1} W_2^{r_2 l_2}$$

#### Step 2. (Evaluate $a_k(s)$ )

Find  $k: a_{k+1}(s) = a_{k+2}(s) == a_p(s) = 0$  and  $a_k(s) \neq 0$  or  $a_{l_1,0} = a_{l_1,1} == a_{l_1,k+1} = 0 \quad \forall l_1$ and  $a_{l_1,k} \neq 0$  for some k.

Step 3. (Evaluate 
$$B(s) = A(s)^T B_{k-1}(s)$$
 where  
 $B_{k-1}(s) = a_0(s) (A(s)A(s)^T)^{k-1} + ... + a_{k-1}(s)I_p)$ 

• We use the following R = (2p-1)q + 1 interpolation points  $u(r) = W^{-r}, W = e^{\frac{2\pi j}{(2p-1)q+1}}$ 

• 
$$\tilde{B}_r = B(u(r)) = \sum_{l=0}^n B_l W^{-lr}$$

 $[\tilde{B}_i]$  and  $[B_l]$  form a DFT pair

• 
$$B_l = \frac{1}{R} \sum_{r=0}^n \tilde{B}_r W^{lr}, l = 0, 1, ..., (2p-1)q$$

#### Step 4. Evaluate the generalized inverse

$$A(s)^{+} = \frac{B(s)}{-a_{k}(s)}$$

## Drazin Inverse

For every matrix  $A \in R^{m \times m}$ , a unique matrix  $A^{D} \in R^{m \times m}$ , which is called Drazin inverse, exists satisfying (i)  $A^{k+1}A^{D} = A^{k}$  for  $k = ind(A) = \min(k \in N : rank(A^{k}) = rank(A^{k+1}))$ (ii)  $A^{D}AA^{D} = A^{D}$ (iii)  $AA^{D} = A^{D}A$ 

## Drazin Inverse

[Staminirovic and Karampetakis 2000] Consider a nonregular one-variable rational matrix A(s). Assume that

$$a(z,s) = \det[zI_m - A(s)] = a_0(s)z^m + a_1(s)z^{m-1} + \dots + a_{m-1}(s)z + a_m(s) \text{ where }$$

 $a_0(s) \equiv 1$ ,  $z \in C$  is the characteristic polynomial of A(s) consider the following sequence of m×m polynomial matrices

$$B_{j}(s) = a_{0}(s)A(s)^{j} + ... + a_{j-1}(s)A(s) + a_{j}(s)I_{m}, a_{0}(s) = 1, \quad j = 0,...,m$$

Let  $a_m(s) \equiv 0, ..., a_{t+1}(s) \equiv 0$ ,  $a_t(s) \neq 0$ . Define the following

set  $\Lambda = \{s_i \in C : a_t(s_i) = 0\}$  Also assume  $B_m(s) \equiv 0, ..., B_r(s) = 0, B_{r-1}(s) \neq 0$  and k=r-t. In the case that  $s \in C \setminus \Lambda$  and k > 0, the Drazin inverse of A(s) is given by  $A^D = (-1)^{k+1} a_t(s)^{-k-1} A(s)^k B_{r-1}(s)^{k+1}$ 

$$B_{t-1}(s) = a_0(s)A(s)^{t-1} + \dots + a_{t-2}(s)A(s) + a_{t-1}(s)I_m$$

In the case  $s \in C \setminus \Lambda$  and k = 0, we get  $A(s)^D = O$ .

Computation of the Drazin Inverse via DFT Step 1 (Evaluation of a(s,z))

$$a(s,z) = \sum_{l_1=0}^{n_1} \sum_{l_2=0}^{n_2} a_{l_1,l_2} s^{l_1} z^{l_2} = \det \left[ z I_m - A(s) \right]$$

• We use the following 
$$R = (2mq+1) \times (m+1)$$
 points  
 $u_i(r_i) = W_i^{-r_i}, i = 1, 2, W_i = e^{\frac{2\pi j}{M_i+1}}i = 1, 2; M_1 = 2mq; M_2 = m$ 

• 
$$\tilde{a}_{r_1,r_2} = \det[u_2(r_2)I_m - A(u_1(r_1))] = \sum_{l_1=0}^{n_1} \sum_{l_2=0}^{n_2} a_{l_1,l_2} W_1^{-r_1l_1} W_2^{-r_2l_2}$$
  
 $[\tilde{a}_{r_1,r_2}] \text{ and } [a_{l_1,l_2}] \text{ form a DFT pair}$ 

• 
$$a_{l_1,l_2} = \frac{1}{R} \sum_{r_1=0}^{n_1} \sum_{r_2=0}^{n_2} \tilde{a}_{r_1,r_2} W_1^{r_1 l_1} W_2^{r_2 l_2}$$
,  $l_1 = 0, 1, ..., 2mq$ ,  $l_2 = 0, 1, ..., m$ 

# Step 2

Find 
$$t: a_{t+1}(s) = a_{t+2}(s) = \dots = a_m(s) = 0$$
  
 $a_t(s) \neq 0$  or  $a_{r_1,0} = a_{r_1,1} = a_{r_1,t+1} = 0 \quad \forall r_1 \text{ and } a_{r_1,t} \neq 0 \text{ for some } t.$ 

Step 3 (*Evaluate* 
$$r \ge t$$
:  $B_m(s) \equiv 0, ..., B_r(s) \equiv 0, B_{r-1}(s) \neq 0$   
 $B_j(s) = A(s)^j + a_1(s)A(s)^{j-1} + a_{j-1}(s)A(s) + a_j(s)I_m$ )

j = m

Determine the value of  $B_j(s)$  at the following  $n_j + 1$  points (or any other  $n_j + 1$  distinct points)

$$u(r) = W^{-r}, W = e^{\frac{2\pi j}{n_j + 1}}$$

Do WHILE 
$$(B_j(s) = 0 \quad \forall u(r))$$
  
 $j = j - 1$   
Determine the value of  $B_j(s)$  at the following  $n_j + 1$  points

$$u(r) = W^{-r}, W = e^{\frac{2\pi j}{n_j + 1}}$$

END DO r = j

**Step 4** (Evaluation of  $A(s)^k B_{t-1}(s)^{k+1}$ )

• 
$$B(s) = A(s)^k B_{t-1}(s)^{k+1} = \sum_{l=0}^n B_l s^l$$
,  
 $B_{t-1}(s) = a_0(s)A(s)^{t-1} + \dots + a_{t-2}(s)A(s) + a_{t-1}(s)I_m$ 

• We use the following (n+1) interpolation points  $u(r) = W^{-r}, W = e^{\frac{2\pi j}{n+1}}$ 

• 
$$\tilde{B}_r = \sum_{l=0}^n B_l W^{-lr}$$

 $[\tilde{B}_i]$  and  $[B_l]$  form a DFT pair

• 
$$B_l = \frac{1}{R} \sum_{r=0}^n \tilde{B}_l W^{lr}$$

#### **Step 5** (Evaluation of $a_t(s)^{k+1}$ )

• 
$$a(s) = a_t(s)^{k+1} = \sum_{l=0}^n a_l s^l$$

• We use the following (n+1) interpolation points  $u(r) = W^{-r}, W = e^{\frac{2\pi j}{n+1}}$ 

• 
$$\tilde{a}_r = a(u(r)) = \sum_{l=0}^n a_l W^{-lr}$$

 $[\tilde{a}_l]$  and  $[a_l]$  form a DFT pair

• 
$$a_l = \frac{1}{R} \sum_{r=0}^n \tilde{a}_r W^{lr}, \quad l = 0, 1, ..., n$$

#### Step 6. (Evaluation of the Drazin inverse)

$$A(s)^D = \frac{B(s)}{a(s)}$$

### Implementation

• The above algorithms have been implemented in Mathematica.

 The following graphs shows the efficiency of the DFT based algorithms compared to the algorithms described in [Karampetakis 1997, Staminirovic and Karampetakis 2000]. The red surface represents the DFT based algorithms.



Generalized Inverses

Drazin Inverses



## Conclusions

- Two new algorithms have been presented for the computation of the generalized inverse and Drazin inverse of a polynomial matrix.
- The proposed algorithms proved to be more efficient from the known ones in the case where the degree and the size of the polynomial matrix get bigger.
- The proposed algorithms can be easily extended to the multivariable polynomial matrices.