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Objectives
• A new algorithm is presented for the

determination of the generalized inverse and the 
drazin inverse of a polynomial matrix based on the
discrete Fourier transform.

• The above algorithms are implemented in the
Mathematica programming language.



Discrete Fourier Transform
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In order for the finite sequence ( , ) and the sequence ( , ) to constitute a 
DFT pair the following relations should hold [Dudgeon, 1984]:
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and ( , ), ( , ) are discrete argument matrix-valued functions, 
with dimensions .
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Generalized Inverse
For every matrix p mA R ×∈ , a unique matrix m pA R+ ×∈ , which is called generalized 
inverse, exists satisfying  
(i) AA A A+ =   
(ii) A AA A+ + +=   
(iii) 

T
AA AA+ +⎛ ⎞

⎜ ⎟
⎝ ⎠

=   

(iv) ( )T
A A A A+ +=   

where TA  denotes the transpose of A . In the special case that the matrix A  is square 
nonsingular matrix, the generalized inverse of A  is simply its inverse i.e. 1A A+ −= .   
 
In an analogous way we define the generalized inverse ( ) ( )m pA s R s+ ×∈  of the 
polynomial matrix ( ) [ ]p mA s R s ×∈  



Computation of the generalized inverse 

[Karampetakis 1997] Let ( ) [ ]p mA s R s ×∈  and   
a(s,z) = 1
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0 ( ) 1a s = , be the characteristic polynomial of ( ) ( )TA s A s . Let 1( ) 0 ( ) 0p ka s a s+≡ ,..., ≡  

while ( ) 0ka s ≠  and { }{ ( ) 0}i k is R a sΛ := ∈ : =  Then the generalized inverse ( )A s +  of 
( )A s  for s R∈ −Λ  is given by 
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If 0k =  is the largest integer such that ( ) 0ka s ≠ , then ( ) 0A s + = . For those is ∈Λ  
find the largest integer ik k<  such that ( ) 0

ik ia s ≠  and then the generalized inverse 

( )iA s +  of ( )iA s  is given by 
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Computation of the generalized inverse via DFT
Step 1. (Evaluation of the polynomial a(s,z))
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We use the following (2 1) ( 1)R pq p= + × +  interpolation points 
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1 2
[ ]r ra ,  and 

1 2
[ ]l la ,  form a DFT pair. 
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Step 2. (Evaluate         )

Find 1 2( ) ( ) ( ) 0k k pk a s a s a s+ +: = == =  and ( ) 0ka s ≠  or 
1 1 10 1 1 0l l l ka a a, , , += == =  1l∀  

and 
1

0l ka , ≠  for some k .  

( )ka s



Step 3. (Evaluate                                where 
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[ ]iB  and [ ]lB  form a DFT pair 
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Step 4. Evaluate the generalized inverse
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Drazin Inverse

For every matrix m mA R ×∈ , a unique matrix D m mA R ×∈ , which is called Drazin 
inverse, exists satisfying  
(i) 1k D kA A A+ =  for 1( ) min( )k kk ind A k N rank A rank A +⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= = ∈ : =   

(ii) D D DA AA A=   
(iii) D DAA A A=   



Drazin Inverse
[Staminirovic and Karampetakis 2000] Consider a nonregular one-variable rational 
matrix ( )A s . Assume that  

[ ] 1
0 1 1( , ) det ( ) ( ) ( ) ... ( ) ( )m m
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0 ( ) 1a s z C≡ , ∈ is the characteristic polynomial of A(s) consider the following 
sequence of m m×  polynomial matrices 
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In the case that s C \∈ Λ  and 0k > , the Drazin inverse of ( )A s  is given by  
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In the case s C \∈ Λ  and 0k = , we get ( )DA s O= .  



Computation of the Drazin Inverse via DFT
Step 1 (Evaluation of a(s,z))
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Step 2 

Find 1 2( ) ( ) ... ( ) 0t t mt a s a s a s+ +: = = = =   
( ) 0ta s ≠  or 

1 1 10 1 1 0r r r ta a a, , , += == =  1r∀  and 
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Step 3 (
)

j m=
Determine the value of ( )jB s  at the following 1jn +  points (or any other 1jn +  
distinct points) 
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We use the following (n+1) interpolation points 
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Step 5 (Evaluation of 1( )k
ta s + )  
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Step 6. (Evaluation of the Drazin inverse)
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Implementation
The above algorithms have been implemented in Mathematica. 

The following graphs shows the efficiency of the DFT based 
algorithms compared to the algorithms described in 
[Karampetakis 1997, Staminirovic and Karampetakis 2000]. The 
red surface represents the DFT based algorithms.
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Conclusions
Two new algorithms have been presented for the computation 
of the generalized inverse and Drazin inverse of a polynomial 
matrix.
The proposed algorithms proved to be more efficient from the 
known ones in the case where the degree and the size of the 
polynomial matrix get bigger.
The proposed algorithms can be easily extended to the 
multivariable polynomial matrices. 


