A DESCRIPTOR SYSTEMS PACKAGE FOR MATHEMATICA

A.I. Vardulakis, N. P. Karampetakis, E. Antoniou, P. Tzekis and S. Vologiannidis

Department of Mathematics Aristotle University of Thessaloniki Thessaloniki 54006, Greece <u>http://anadrasis.math.auth.gr</u>

Outline of the presentation

- Control System Professional
- Polynomial Control Systems
- Descriptor Control Systems

Mathematica and Control Control System Professional

 Control System Professional handles linear systems described by state-space equations and proper transfer functions.

- Time-Domain Response Analysis
- System Interconnections
- Controllability and Observability
- Realizations Construction and Conversion
- Feedback Control Systems Design
- Optimal Control Systems Design
- Linearization tools

Mathematica and Control Polynomial Control Systems

- Polynomial Control Systems developed by Prof. Munro handles the general class of polynomial matrix descriptions (PMDs).
 - Model transformations
 - System analysis
 - System design

Objectives of the **descriptor systems package**

- Extend the functionality of the Control Systems Professional package in order to handle descriptor state space representations and improper transfer functions.
 - Manipulation of polynomial and rational matrices
 - Introduction of descriptor state space systems as data objects
 - Extension of the functions of CSP concerning
 - System analysis
 - Time-Domain Response Analysis
 - Synthesis and design techniques
- Maintain compatibility with the existing infrastructure of Control Systems Professional and Polynomial Control Systems.

Manipulation of polynomial and rational matrices

- New functions for the study of rings of rational functions with poles in a prescribed region of the complex plane as well as for rational matrices with entries coming from these rings
 - the ring of rational functions with no poles in the complex plane (polynomials) (ForbiddenPolesArea->FiniteComplex)
 - the ring of rational functions with **no poles at infinity** (proper functions)
 (*ForbiddenPolesArea->InfinityPoint*)
 - the ring of rational functions with no poles in the extended right half complex plane (proper and Hurwitz stable rational functions) (ForbiddenPolesArea->HurwitzStable)
 - the ring of rational functions with no poles outside the unit circle (proper and Schur stable rational functions)

(ForbiddenPolesArea->SchurStable)

Manipulation of polynomial and rational matrices Problems studied over different rings

- Division between two rational functions
- Greatest common divisor and least common multiple
- Coprimeness
- Smith McMillan form
- Solutions of rational matrix Diophantine equations

Consider a descriptor system described by a set of linear differential and/or algebraic equations of the form:

 $E\dot{x}(t) = Ax(t) + Bu(t)$

$$y(t) = Cx(t) + Du(t)$$

where $E, A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{p \times n}, D \in \mathbb{R}^{p \times m}$ and E possibly non-singular with det $(sE - A) \neq 0$.

•A **Descriptor state space system data object** named "DescriptorStateSpace" has been added in Mathematica.

•**Transformations** between Transfer functions, Descriptor State Space and PMDs are available

The descriptor state-space model of a simple RLC circuit.

R, L, C stand for the resistor, inductor and capacity quantities respectively.

 V_{S} is the voltage source (control input), and $V_{\text{R}},\,V_{\text{L}},\,V_{\text{C}}$ are the corresponding voltages.

The descriptor state-space model of a simple RLC circuit. Definition

 $e = \{ \{L, 0, 0, 0\}, \{0, 0, 1, 0\}, \{0, 0, 0, 0\}, \{0, 0, 0, 0\} \}; \\a = \{ \{0, 1, 0, 0\}, \{1/C, 0, 0, 0\}, \{-R, 0, 0, 1\}, \{0, 1, 1, 1\} \}; \\b = \{ \{0\}, \{0\}, \{0\}, \{-1\} \}; \\c = \{ \{0, 0, 1, 0\} \}; \end{cases}$

dss=DescriptorStateSpace[e, a, b, c]

The descriptor state-space model of a simple RLC circuit.

EquationForm[dss, StateVariables \rightarrow {"I", V_L, V_C, V_R}, InputVariables \rightarrow V_S] WeierstrassCanonicalForm[dss/. R \rightarrow 1/. C \rightarrow 1/. L \rightarrow 1]

System Analysis Properties

- Determination of the structural invariants and properties of descriptor systems
 - controllability, reachability and observability matrices
 - finite and infinite decoupling zeros
 - finite and infinite system poles and zeros
 - finite and infinite invariant zeros
 - finite and infinite transmission poles and zeros
 - Controllability, reachability, observability, detectability, stabilizability, stability tests.

Analysis of the descriptor state-space model of a simple RLC circuit. Zeros-Poles

. The Smith McMillan form of the pencil

McMillanDecomposition[s*e - a, s][[1]]//Factor

$$\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & \frac{C L s^2 + C R s + 1}{C L}
\end{array}\right)$$

. The Smith McMillan form of the pencil at infinity

McMillanDecomposition[s*e - a, s, ForbiddenPolesArea
-> InfinityPoint][[1]]

 $\begin{pmatrix} s & 0 & 0 & 0 \\ 0 & s & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ No zeros at infinity

Analysis of the descriptor state-space model of a simple RLC circuit. Zeros-Poles

 Infinite transmission poles-zeros (Infinite poles-zeros of C(sE - A)⁻¹B) tf=TransferFuncti on[dss]; McMillanDecomposition[tf[s], s, ForbiddenPolesArea ->

```
InfinityPoint][[1]]
```

 $\left(\frac{1}{s^2}\right)$

One transmission zero at infinity of order 2

Infinite input-decoupling zeros (Infinite zeros of [(sE-A) B])
 sc = AppendRows[s*e-a, b] ;

McMillanDecomposition[sc, s, ForbiddenPolesArea ->
 InfinityPoint][[1]]

 $\begin{pmatrix} s & 0 & 0 & 0 & 0 \\ 0 & s & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}$ No decoupling zeros at infinity

Analysis of the descriptor state-space model of a simple RLC circuit. Controllability-Observability

Consider the RLC circuit with R=L=C=1. dssrl c=dss/. {R->1, L->1, C->1};

Cm=ControllabilityMatrix[dssrlc]
Controllable[dssrlc]

$$\begin{pmatrix} -\frac{\sqrt{\frac{3}{95}}}{2} & -\sqrt{\frac{3}{95}} & 0 & 0 & 0\\ \frac{\sqrt{\frac{5}{19}}}{2} & -\frac{2}{\sqrt{95}} & 0 & 0 & 0\\ 0 & 0 & -\sqrt{\frac{46}{105}} & 0 & 1\\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

True

Time domain responses

- Symbolic approach (StateResponse and OutputResponse)
 - When supplied the input and the initial conditions, attempts to calculate the state and output response respectively.
- Simulation based approach (SimulationPlot)
 - Approximate numerical solutions.

Time domain responses

Response of the descriptor state-space model of a simple RLC circuit. State Response

dssrlc=dss/. {R->0.5, C->0.4, L->1}; x0 = {0,0,0,0}; ut = {DiracDelta[t]}; xd=StateResponse[dssrlc, ut, t, InitialConditions->x0]//N

$$\left\{ e^{-0.25 t} \left(1.\cos(1.56125 t) - 0.160128 \sin(1.56125 t) \right) \theta(t), \\ 1. \delta(t) + e^{-0.25 t} \left(-0.5 \cos(1.56125 t) - 1.52122 \sin(1.56125 t) \right) \theta(t), \\ 1.60128 e^{-0.25 t} \sin(1.56125 t) \theta(t), \\ e^{-0.25 t} \left(0.5 \cos(1.56125 t) - 0.0800641 \sin(1.56125 t) \right) \theta(t) \right\}$$

 $\theta(t)$ is the unit step function

Time domain responses

Response of the descriptor state-space model of a simple RLC circuit. State Response

Pl ot[Eval uate[xd/. Di racDel ta->Gaussi an], {t, -0. 01, 12}, Pl otStyl e->{RGBCol or[0, 1, 0], RGBCol or[1, 0, 0], RGBCol or[0, 0, 1], RGBCol or[1, 0, 1]}, Pl otRange->Al I]

Design Synthesis Techniques

- Stabilizing compensator design, asymptotic tracking, model matching and disturbance rejection.
- Descriptor system interconnections such as series, parallel, feedback and generic interconnection.
- Pole assignment techniques

Design Synthesis Techniques

Pole assignment of a simple RLC circuit.

Assign the poles of the system to {p1, p2} by constant state feedback

f=StateFeedbackGains[dss, {p1, p2}, Method->FiniteDescriptorPoleAssignment] $(-5L(p1+p2)-9R \ 6 \ 5CLp1p2+1 \ 10)$

McMillanDecomposition[s*e-(a+b.f), s][[1]]//Factor

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -(p1-s)(s-p2) \end{pmatrix}$$

Outline of the presentation

- Control System Professional
- Polynomial Control Systems
- Descriptor Control Systems
 - Manipulation of polynomial and rational matrices
 - •Extension of the functions of CSP concerning
 - System analysis
 - •Time-Domain Response Analysis
 - •Synthesis and design techniques

A DESCRIPTOR SYSTEMS PACKAGE FOR MATHEMATICA

- Acknowledgements
 - Thanks to Wolfram Research and especially to Dr. Igor Bakshee for their interest and valuable help.
- Further development
 - Advanced Numerical methods for descriptor control systems.